Non-strong uniqueness in real and complex Chebyshev approximation

[1]  Ludwig J. Cromme,et al.  Eine Klasse von Verfahren zur Ermittlung bester nichtlinearer Tschebyscheff-Approximationen , 1975 .

[2]  Volker Klotz,et al.  Gewisse rationale tschebyscheff-approximationen in der komplexen ebene , 1977 .

[3]  H. L. Loeb,et al.  On the continuity of the nonlinear Tschebyscheff operator , 1970 .

[4]  M. Bartelt On Lipschitz conditions, strong unicity and a Theorem of A. K. Cline , 1975 .

[5]  Kritische Punkte bei der nichtlinearen Tschebyscheff-Approximation , 1973 .

[6]  Günter Meinardus,et al.  Nicht-lineare approximationen , 1964 .

[7]  M. Bartelt,et al.  Characterizations of strong unicity in approximation theory , 1973 .

[8]  Jack Williams,et al.  Rational Chebyshev Approximation in the Complex Plane , 1976 .

[9]  Geometrical characterizations for nonlinear uniform approximation , 1974 .

[10]  M. Bartelt Strongly unique best approximates to a function on a set, and a finite subset thereof , 1974 .

[11]  H. S. Shapiro,et al.  A Unified Approach to Certain Problems of Approximation and Minimization , 1961 .

[12]  H. McLaughlin,et al.  Another characterization of Haar subspaces , 1975 .

[13]  Jack Williams,et al.  Characterization and Computation of Rational Chebyshev Approximations in the Complex Plane , 1979 .

[14]  Richard S. Varga,et al.  Nonuniqueness of best approximating complex rational functions , 1977 .

[15]  Harold S. Shapiro,et al.  Some theorems on Čebyšev approximation , 1963 .

[16]  D. Wulbert Uniqueness and differential characterization of approximations from manifolds of functions , 1971 .