Non-strong uniqueness in real and complex Chebyshev approximation
暂无分享,去创建一个
[1] Ludwig J. Cromme,et al. Eine Klasse von Verfahren zur Ermittlung bester nichtlinearer Tschebyscheff-Approximationen , 1975 .
[2] Volker Klotz,et al. Gewisse rationale tschebyscheff-approximationen in der komplexen ebene , 1977 .
[3] H. L. Loeb,et al. On the continuity of the nonlinear Tschebyscheff operator , 1970 .
[4] M. Bartelt. On Lipschitz conditions, strong unicity and a Theorem of A. K. Cline , 1975 .
[5] Kritische Punkte bei der nichtlinearen Tschebyscheff-Approximation , 1973 .
[6] Günter Meinardus,et al. Nicht-lineare approximationen , 1964 .
[7] M. Bartelt,et al. Characterizations of strong unicity in approximation theory , 1973 .
[8] Jack Williams,et al. Rational Chebyshev Approximation in the Complex Plane , 1976 .
[9] Geometrical characterizations for nonlinear uniform approximation , 1974 .
[10] M. Bartelt. Strongly unique best approximates to a function on a set, and a finite subset thereof , 1974 .
[11] H. S. Shapiro,et al. A Unified Approach to Certain Problems of Approximation and Minimization , 1961 .
[12] H. McLaughlin,et al. Another characterization of Haar subspaces , 1975 .
[13] Jack Williams,et al. Characterization and Computation of Rational Chebyshev Approximations in the Complex Plane , 1979 .
[14] Richard S. Varga,et al. Nonuniqueness of best approximating complex rational functions , 1977 .
[15] Harold S. Shapiro,et al. Some theorems on Čebyšev approximation , 1963 .
[16] D. Wulbert. Uniqueness and differential characterization of approximations from manifolds of functions , 1971 .