Towards a Learning Theory of Causation

We pose causal inference as the problem of learning to classify probability distributions. In particular, we assume access to a collection $\{(S_i,l_i)\}_{i=1}^n$, where each $S_i$ is a sample drawn from the probability distribution of $X_i \times Y_i$, and $l_i$ is a binary label indicating whether "$X_i \to Y_i$" or "$X_i \leftarrow Y_i$". Given these data, we build a causal inference rule in two steps. First, we featurize each $S_i$ using the kernel mean embedding associated with some characteristic kernel. Second, we train a binary classifier on such embeddings to distinguish between causal directions. We present generalization bounds showing the statistical consistency and learning rates of the proposed approach, and provide a simple implementation that achieves state-of-the-art cause-effect inference. Furthermore, we extend our ideas to infer causal relationships between more than two variables.

[1]  P. Bartlett,et al.  Empirical minimization , 2006 .

[2]  Claudia Baier Direction Of Time , 2016 .

[3]  Bernhard Schölkopf,et al.  Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..

[4]  Aapo Hyvärinen,et al.  On the Identifiability of the Post-Nonlinear Causal Model , 2009, UAI.

[5]  Bernhard Schölkopf,et al.  Consistency of Causal Inference under the Additive Noise Model , 2013, ICML.

[6]  Barnabás Póczos,et al.  Learning Theory for Vector-Valued Distribution Regression , 2015 .

[7]  P. Bartlett,et al.  Local Rademacher complexities , 2005, math/0508275.

[8]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, Discovery Science.

[9]  Bernhard Schölkopf,et al.  Nonlinear causal discovery with additive noise models , 2008, NIPS.

[10]  Bernhard Schölkopf,et al.  Information-geometric approach to inferring causal directions , 2012, Artif. Intell..

[11]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[12]  Bernhard Schölkopf,et al.  Inferring deterministic causal relations , 2010, UAI.

[13]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[14]  Aapo Hyvärinen,et al.  DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model , 2011, J. Mach. Learn. Res..

[15]  S. Boucheron,et al.  Theory of classification : a survey of some recent advances , 2005 .

[16]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[17]  AI Koan,et al.  Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning , 2008, NIPS.

[18]  W. Lockau,et al.  Contents , 2015 .

[19]  B. Schölkopf,et al.  Justifying Information-Geometric Causal Inference , 2014, 1402.2499.

[20]  Eric P. Xing,et al.  Nonextensive Information Theoretic Kernels on Measures , 2009, J. Mach. Learn. Res..

[21]  Bernhard Schölkopf,et al.  Detecting the direction of causal time series , 2009, ICML '09.

[22]  Aapo Hyvärinen,et al.  A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..

[23]  V. Koltchinskii,et al.  Oracle inequalities in empirical risk minimization and sparse recovery problems , 2011 .

[24]  Michael I. Jordan,et al.  Convexity, Classification, and Risk Bounds , 2006 .

[25]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[26]  Arthur Gretton,et al.  Learning Theory for Distribution Regression , 2014, J. Mach. Learn. Res..

[27]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[28]  Bernhard Schölkopf,et al.  Probabilistic latent variable models for distinguishing between cause and effect , 2010, NIPS.

[29]  Bernhard Schölkopf,et al.  Learning from Distributions via Support Measure Machines , 2012, NIPS.

[30]  Bernhard Schölkopf,et al.  Causal discovery with continuous additive noise models , 2013, J. Mach. Learn. Res..

[31]  K. Fukumizu,et al.  Learning via Hilbert Space Embedding of Distributions , 2007 .

[32]  S. Mendelson,et al.  Aggregation via empirical risk minimization , 2009 .

[33]  V. Koltchinskii,et al.  Rademacher Processes and Bounding the Risk of Function Learning , 2004, math/0405338.

[34]  Tony Jebara,et al.  Probability Product Kernels , 2004, J. Mach. Learn. Res..

[35]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[36]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[37]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[38]  Matthias Hein,et al.  Hilbertian Metrics and Positive Definite Kernels on Probability Measures , 2005, AISTATS.

[39]  Bernhard Schölkopf,et al.  On causal and anticausal learning , 2012, ICML.

[40]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .

[41]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[42]  Kenji Fukumizu,et al.  Semigroup Kernels on Measures , 2005, J. Mach. Learn. Res..

[43]  Andreas Maurer,et al.  The Rademacher Complexity of Linear Transformation Classes , 2006, COLT.

[44]  Li Li,et al.  Support Vector Machines , 2015 .

[45]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[46]  Bernhard Schölkopf,et al.  Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks , 2014, J. Mach. Learn. Res..

[47]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .