Effect of CVI SiC content on ablation and mechanism of C/C-SiC-ZrC-Cu composites

[1]  Yicheng Ge,et al.  Microstructure and ablation behaviour of a carbon/carbon-ZrC-Cu composite prepared by adding Ti to Zr/Cu powder mixture , 2019, Corrosion Science.

[2]  Hong Wang,et al.  Effect of ZrC amount and distribution on the thermomechanical properties of C f /SiC‐ZrC composites , 2019, International Journal of Applied Ceramic Technology.

[3]  K. B. Joshi,et al.  Thermoelectric properties of cuprous oxide by first-principles method , 2019, Journal of Alloys and Compounds.

[4]  Wei Li,et al.  Preparation, ablation behavior and mechanism of C/C-ZrC-SiC and C/C-SiC composites , 2018 .

[5]  Yicheng Ge,et al.  Microstructural development of a C/C-ZrC-Cu composite prepared by reactive melt infiltration with Zr/Cu powder mixture , 2018 .

[6]  Xiaohong Shi,et al.  Effects of low-temperature thermal cycling treatment on the microstructures, mechanical properties and oxidation resistance of C/C-ZrC-SiC composites , 2017 .

[7]  Jiabao Zhang,et al.  Microstructure and ablation mechanism of C/C-ZrC-SiC composites in a plasma flame , 2017 .

[8]  J. Pierson,et al.  Electronic structures of Cu2O, Cu4O3, and CuO: A joint experimental and theoretical study , 2016 .

[9]  Rongjun Liu,et al.  Ablation and mechanical properties of 3D braided C/ZrC–SiC composites with various SiC/ZrC ratios , 2016 .

[10]  Hongwei Liu,et al.  Effect of ZrC–SiC content on microstructure and ablation properties of C/C composites , 2016 .

[11]  Yiguang Wang,et al.  Ablation behavior of C/SiC composites in plasma wind tunnel , 2016 .

[12]  Hejun Li,et al.  Effects of high-temperature annealing on the microstructures and mechanical properties of C/C–ZrC–SiC composites prepared by precursor infiltration and pyrolysis , 2016 .

[13]  Yicheng Ge,et al.  Microstructure and Ablation Property of a Carbon/Carbon–ZrC Composite Fabricated by Reactive Melt Infiltration with Zr/Cu Powder Mixture , 2016 .

[14]  Hejun Li,et al.  Ablation behaviour of C/C and C/C–ZrC–SiC composites with cone-shaped holes under an oxyacetylene flame , 2016 .

[15]  J. Pierson,et al.  Tuning the structure and preferred orientation in reactively sputtered copper oxide thin films , 2015 .

[16]  Z. Hao,et al.  Comparison of ablative behaviour for ZrC and ZrC–Cu doped carbon/carbon composites in oxyacetylene torch environment , 2014 .

[17]  Qizhong Huang,et al.  Ablation behavior of ZrC–SiC coated C/C–ZrC–SiC composites prepared by precursor infiltration pyrolysis combined with reactive melt infiltration , 2014 .

[18]  Xin Yang,et al.  Pyrolysis mechanism of ZrC precursor and fabrication of C/C-ZrC composites by precursor infiltration and pyrolysis , 2014 .

[19]  Xiaohong Shi,et al.  Effect of Cu particles on the ablation properties of C/C composites , 2013 .

[20]  Hejun Li,et al.  Microstructures and ablation properties of C/C−SiC−ZrC composites prepared using C/C skeletons with various densities , 2013 .

[21]  Hejun Li,et al.  Ablation behavior and mechanism of C/C–ZrC–SiC composites under an oxyacetylene torch at 3000 °C , 2013 .

[22]  Hejun Li,et al.  Growth mechanism of silica nanowires without a metal catalyst via oxyacetylene torch ablation , 2012 .

[23]  Wangping Wu,et al.  Microstructural characterization on ZrC doped carbon/carbon composites , 2012 .

[24]  Hejun Li,et al.  Influence of SiC nanowires on the properties of SiC coating for C/C composites between room temperature and 1500 °C , 2011 .

[25]  Liping Ran,et al.  Ablation property of a C/C–Cu composite prepared by pressureless infiltration , 2011 .

[26]  G. Vignoles,et al.  Modelling of carbon–carbon composite ablation in rocket nozzles , 2010 .

[27]  Zhaofeng Chen,et al.  Morphology and microstructure of 2.5 dimension C/SiC composites ablated by oxyacetylene torch , 2009 .

[28]  Jingyi Deng,et al.  Comparison of thermal and ablation behaviors of C/SiC composites and C/ZrB2–SiC composites , 2009 .

[29]  M. Nygren,et al.  Spark plasma sintering and mechanical behaviour of ZrC-based composites , 2008 .

[30]  John W. Halloran,et al.  Rapid oxidation characterization of ultra-high temperature ceramics , 2007 .

[31]  Andreas Mack,et al.  Aerothermodynamic behaviour of a generic nosecap model including thermomechanical structural effects , 2007 .

[32]  P. Pareige,et al.  A new processing technique for copper–graphite multifilamentary nanocomposite wire: Microstructures and electrical properties , 2007 .

[33]  Ke Yang,et al.  Mechanical and ablation properties of 2D-carbon/carbon composites pre-infiltrated with a SiC filler , 2006 .

[34]  W. Krenkel,et al.  C/C–SiC composites for space applications and advanced friction systems , 2005 .

[35]  J. Zaykoski,et al.  Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience , 2004 .

[36]  H. Okamoto Cu-Si (Copper-Silicon) , 2002 .

[37]  Hui-ping Duan,et al.  Wettability of SiC/Liquid Cu with Ti Additive System , 2002 .

[38]  M. Ferraris,et al.  Oxidation protective multilayer coatings for carbon-carbon composites , 2002 .

[39]  Jai-Young Lee,et al.  Decomposition and interfacial reaction in brazing of SiC by copper-based active alloys , 1992 .