The Earth's Magnetic Field Enhances Solar Energy Deposition in the Upper Atmosphere

The presence of a large‐scale planetary magnetic field is thought to be a protective factor for atmospheres, preventing them from being blown off by the solar wind. We focus on one key aspect of atmospheric escape: how does a planetary magnetic fields affect the energy transfer from the Sun to the atmosphere? We estimate the solar wind energy currently dissipated in the Earth's atmosphere using empirical formulas derived from observations. We show that it is significantly higher than the energy dissipated in the atmosphere of a hypothetical unmagnetized Earth. Consequently, we conclude that the Earth's magnetic field enhances the solar energy dissipation in the Earth's atmosphere and that, contrary to the old paradigm, an intrinsic magnetic field does not necessarily reduces atmospheric loss.

[1]  R. Maggiolo,et al.  Does a Magnetosphere Protect the Ionosphere? , 2021 .

[2]  S. Barabash,et al.  Do Intrinsic Magnetic Fields Protect Planetary Atmospheres from Stellar Winds? , 2021, Space Science Reviews.

[3]  A. Schillings,et al.  Global Venus‐Solar Wind Coupling and Oxygen Ion Escape , 2021, Geophysical Research Letters.

[4]  J. Drake,et al.  Atmospheric Escape Processes and Planetary Atmospheric Evolution , 2020, Journal of Geophysical Research: Space Physics.

[5]  S. Thaller,et al.  Global Alfvén Wave Power in the Auroral Zone in Relation to the AE Index , 2019, Journal of Geophysical Research: Space Physics.

[6]  D. Baker Wave-Particle Interactions in the Earth's Magnetosphere , 2019, 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA).

[7]  M. Lockwood Does Adding Solar Wind Poynting Flux Improve the Optimum Solar Wind‐Magnetosphere Coupling Function? , 2019, Journal of Geophysical Research: Space Physics.

[8]  J. Lindkvist,et al.  Why an intrinsic magnetic field does not protect a planet against atmospheric escape , 2018, Astronomy & Astrophysics.

[9]  M. Kivelson,et al.  Planetary Magnetospheres , 2018 .

[10]  B. Jakosky,et al.  Flows, Fields, and Forces in the Mars‐Solar Wind Interaction , 2017 .

[11]  R. Maggiolo,et al.  The Delayed Time Response of Geomagnetic Activity to the Solar Wind , 2017 .

[12]  B. Jakosky,et al.  Statistical Study of Relations Between the Induced Magnetosphere, Ion Composition, and Pressure Balance Boundaries Around Mars Based On MAVEN Observations , 2017 .

[13]  S. Barabash,et al.  Global Mars‐solar wind coupling and ion escape , 2017 .

[14]  S. Barabash,et al.  Solar wind‐ and EUV‐dependent models for the shapes of the Martian plasma boundaries based on Mars Express measurements , 2017 .

[15]  B. Jakosky,et al.  Structure, dynamics, and seasonal variability of the Mars‐solar wind interaction: MAVEN Solar Wind Ion Analyzer in‐flight performance and science results , 2017 .

[16]  Y. Futaana,et al.  Properties of planetward ion flows in Venus’ magnetotail , 2016 .

[17]  V. Angelopoulos,et al.  ULF wave electromagnetic energy flux into the ionosphere: Joule heating implications , 2014 .

[18]  C. P. Escoubet,et al.  Review of Solar Wind Entry into and Transport Within the Plasma Sheet , 2014 .

[19]  S. Barabash,et al.  Venus ion outflow estimates at solar minimum: Influence of reference frames and disturbed solar wind conditions , 2013 .

[20]  N. Østgaard,et al.  Energy transfer and flow in the solar wind‐magnetosphere‐ionosphere system: A new coupling function , 2013 .

[21]  W. Xu,et al.  Characteristics of magnetospheric energetics during geomagnetic storms , 2012 .

[22]  G. Chat,et al.  The Solar Wind Energy Flux , 2012, 1203.1316.

[23]  X. Feng,et al.  Efficiency of solar wind energy coupling to the ionosphere , 2011 .

[24]  Patrick T. Newell,et al.  Diffuse, monoenergetic, and broadband aurora: The global precipitation budget , 2009 .

[25]  C. Russell,et al.  Induced magnetosphere and its outer boundary at Venus , 2008 .

[26]  I. J. Rae,et al.  Energy deposition in the ionosphere through a global field line resonance , 2007 .

[27]  Frederick J. Rich,et al.  A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables , 2007 .

[28]  David Andrew Brain,et al.  Mars Global Surveyor Measurements of the Martian Solar Wind Interaction , 2007 .

[29]  S. Barabash,et al.  Plasma Moments in the Environment of Mars , 2007 .

[30]  R. Lundin,et al.  Plasma Moments in the environment of Mars Mars Express ASPERA-3 Observations , 2006 .

[31]  M. McHarg,et al.  Climatology of extreme upper atmospheric heating events , 2005 .

[32]  M. Acuna,et al.  Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets , 2004 .

[33]  V. Vasyliūnas,et al.  Meaning of ionospheric Joule heating , 2004 .

[34]  J. Gjerloev,et al.  A relation between the energy deposition by electron precipitation and geomagnetic indices during substorms , 2002 .

[35]  N. Østgaard,et al.  Energy analysis of substorms based on remote sensing techniques, solar wind measurements, and geomagnetic indices , 2002 .

[36]  Matthew G. McHarg,et al.  Joule heating patterns as affunction of polar cap index , 2002 .

[37]  Robert W. Schunk,et al.  Ionospheres : physics, plasma physics, and chemistry , 2000 .

[38]  Matthew G. McHarg,et al.  Polar cap index as a proxy for hemispheric Joule heating , 1999 .

[39]  M. Codrescu,et al.  An overview of the early November 1993 geomagnetic storm , 1998 .

[40]  E. Roelof,et al.  Large-scale structure of the interplanetary medium , 1973, Solar Physics.