Giant-grain copper metallization for high reliability and high-speed ULSI interconnects
暂无分享,去创建一个
By using the low kinetic energy particle process, Cu films grown on SiO2 under a sufficient amount of energy deposition exhibit almost perfect crystal orientation conversion from Cu(111) to Cu(100) after thermal annealing. This crystal orientation conversion is always accompanied by giant-grain-growth in the film as large as several hundred micrometers. The crystal orientation conversion is primarily governed by the total energy density deposited to the film during film growth. In this work, we have discovered another important factor that governs the crystal orientation conversion, i.e., the total amount of energy deposition to the entire film. The crystal orientation conversion by thermal annealing is observed only for film thickness greater than 1.0 micrometers . In terms of electrical properties, the resistivity of giant- grain-Cu film at a room temperature is 1.78 (mu) (Omega) (DOT)cm, which is almost identical to the bulk resistivity (1.72 (mu) (Omega) (DOT)cm). And electromigration lifetime for giant- grain-Cu interconnect is approximately 3 - 5 orders of magnitude larger than those for Al-alloy interconnects at a room temperature.