Taste buds as peripheral chemosensory processors.

Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50-100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds - Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell-cell communication shapes taste bud signaling via these transmitters.

[1]  Esakov Ai,et al.  Significance of serotonin in the activity of the taste receptor apparatus of the frog Rana temporaria , 1983 .

[2]  V. Collings Human taste response as a function of locus of stimulation on the tongue and soft palate , 1974 .

[3]  A. I. Esakov,et al.  [Significance of serotonin in the activity of the taste receptor apparatus of the frog Rana temporaria]. , 1983, Zhurnal evoliutsionnoi biokhimii i fiziologii.

[4]  T. Ogura,et al.  Acetylcholine and acetylcholine receptors in taste receptor cells. , 2005, Chemical senses.

[5]  M. Takeda Uptake of 5-hydroxytryptophan by gustatory cells in the mouse taste bud. , 1977, Archivum histologicum Japonicum = Nihon soshikigaku kiroku.

[6]  Stephen D. Roper,et al.  The cell biology of taste , 2010, The Journal of cell biology.

[7]  Kohgaku Eguchi,et al.  Functional expression of M3, a muscarinic acetylcholine receptor subtype, in taste bud cells of mouse fungiform papillae. , 2008, Chemical senses.

[8]  Jayaram Chandrashekar,et al.  An amino-acid taste receptor , 2002, Nature.

[9]  S. Roper,et al.  Norepinephrine Is Coreleased with Serotonin in Mouse Taste Buds , 2008, The Journal of Neuroscience.

[10]  E. Liman,et al.  A proton current drives action potentials in genetically identified sour taste cells , 2010, Proceedings of the National Academy of Sciences.

[11]  R. G. Murray Cellular relations in mouse circumvallate taste buds , 1993, Microscopy research and technique.

[12]  Liquan Huang,et al.  A transient receptor potential channel expressed in taste receptor cells , 2002, Nature Neuroscience.

[13]  T. Knott,et al.  P2X Purinergic Receptor Knockout Mice Reveal Endogenous ATP Modulation of Both Vasopressin and Oxytocin Release from the Intact Neurohypophysis , 2012, Journal of neuroendocrinology.

[14]  A. C. Spector,et al.  The selective serotonin reuptake inhibitor paroxetine does not alter consummatory concentration-dependent licking of prototypical taste stimuli by rats. , 2011, Chemical senses.

[15]  M. S. Jafri,et al.  In Situ Ca2+ Imaging Reveals Neurotransmitter Receptors for Glutamate in Taste Receptor Cells , 2000, The Journal of Neuroscience.

[16]  Sami Damak,et al.  Detection of Sweet and Umami Taste in the Absence of Taste Receptor T1r3 , 2003, Science.

[17]  Jayaram Chandrashekar,et al.  The cells and logic for mammalian sour taste detection , 2006, Nature.

[18]  N. Chaudhari,et al.  Adenosine Enhances Sweet Taste through A2B Receptors in the Taste Bud , 2012, The Journal of Neuroscience.

[19]  E R LALONDE,et al.  Number and distribution of taste buds on the epiglottis, pharynx, larynx, soft palate and uvula in a human newborn , 1961, The Anatomical record.

[20]  S. Roper,et al.  Acid Stimulation (Sour Taste) Elicits GABA and Serotonin Release from Mouse Taste Cells , 2011, PloS one.

[21]  S. Roper,et al.  Glutamate May Be an Efferent Transmitter That Elicits Inhibition in Mouse Taste Buds , 2012, PloS one.

[22]  R. Zorec,et al.  Capacitance Measurements of Regulated Exocytosis in Mouse Taste Cells , 2010, The Journal of Neuroscience.

[23]  S. Roper,et al.  Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste , 2008, The Journal of physiology.

[24]  W. Meyerhof,et al.  Oligomerization of TAS2R bitter taste receptors. , 2010, Chemical senses.

[25]  N. Ryba,et al.  Mammalian Sweet Taste Receptors , 2001, Cell.

[26]  J. Melichar,et al.  Human Taste Thresholds Are Modulated by Serotonin and Noradrenaline , 2006, The Journal of Neuroscience.

[27]  J. C. Kinnamon,et al.  “Type III” cells of rat taste buds: Immunohistochemical and ultrastructural studies of neuron‐specific enolase, protein gene product 9.5, and serotonin , 2001, The Journal of comparative neurology.

[28]  G. Burnstock,et al.  Localization of ATP-gated P2X2 and P2X3 receptor immunoreactive nerves in rat taste buds. , 1999, Neuroreport.

[29]  D. W. Pumplin,et al.  Light and dark cells of rat vallate taste buds are morphologically distinct cell types , 1997 .

[30]  E. Delay,et al.  Sucrose and monosodium glutamate taste thresholds and discrimination ability of T1R3 knockout mice. , 2006, Chemical senses.

[31]  R. Margolskee,et al.  Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity. , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.

[32]  N. Ryba,et al.  The Receptors for Mammalian Sweet and Umami Taste , 2003, Cell.

[33]  Jianzhi Zhang,et al.  Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. , 2006, Molecular biology and evolution.

[34]  S. Tomchik,et al.  Biogenic amine synthesis and uptake in rodent taste buds , 2007, The Journal of comparative neurology.

[35]  Dianqing Wu,et al.  Mouse Taste Buds Use Serotonin as a Neurotransmitter , 2005, The Journal of Neuroscience.

[36]  J. Desimone,et al.  Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. , 1984, Science.

[37]  S. Herness,et al.  The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud , 2009, Physiology & Behavior.

[38]  N. Ryba,et al.  Common Sense about Taste: From Mammals to Insects , 2009, Cell.

[39]  S. Roper Parallel processing in mammalian taste buds? , 2009, Physiology & Behavior.

[40]  N. Chaudhari,et al.  The role of pannexin 1 hemichannels in ATP release and cell–cell communication in mouse taste buds , 2007, Proceedings of the National Academy of Sciences.

[41]  S. Simon,et al.  Identification of muscarinic acetylcholine receptors in isolated canine lingual epithelia via voltage clamp measurements. , 1992, Archives of oral biology.

[42]  G. Burnstock,et al.  Localization of P2X3 receptors and coexpression with P2X2 receptors during rat embryonic neurogenesis , 2002, The Journal of comparative neurology.

[43]  S. Kinnamon,et al.  Tonic activity of Gα‐gustducin regulates taste cell responsivity , 2008, FEBS letters.

[44]  P. Temussi,et al.  From small sweeteners to sweet proteins: anatomy of the binding sites of the human T1R2_T1R3 receptor. , 2005, Journal of medicinal chemistry.

[45]  N. Chaudhari,et al.  GABA, Its Receptors, and GABAergic Inhibition in Mouse Taste Buds , 2011, The Journal of Neuroscience.

[46]  I. J. Miller Variation in human fungiform taste bud densities among regions and subjects , 1986, The Anatomical record.

[47]  T. Finger,et al.  ATP Signaling Is Crucial for Communication from Taste Buds to Gustatory Nerves , 2005, Science.

[48]  T. Shen,et al.  Adrenergic signalling between rat taste receptor cells , 2002, The Journal of physiology.

[49]  F. Ataullakhanov,et al.  What Determines the Intracellular ATP Concentration , 2002, Bioscience reports.

[50]  Peter Mombaerts,et al.  Odorant receptor gene choice in olfactory sensory neurons: the one receptor–one neuron hypothesis revisited , 2004, Current Opinion in Neurobiology.

[51]  E. Liman,et al.  Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Dan Yang,et al.  A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds , 2012, PloS one.

[53]  Michael S. Sinclair,et al.  Inward rectifier channel, ROMK, is localized to the apical tips of glial‐like cells in mouse taste buds , 2009, The Journal of comparative neurology.

[54]  S. Tomchik,et al.  Breadth of Tuning and Taste Coding in Mammalian Taste Buds , 2007, The Journal of Neuroscience.

[55]  Y. Cho,et al.  Type II and III Taste Bud Cells Preferentially Expressed Kainate Glutamate Receptors in Rats. , 2009, The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology.

[56]  Y. Ninomiya,et al.  Taste responsiveness of fungiform taste cells with action potentials. , 2006, Journal of neurophysiology.

[57]  N. Ryba,et al.  T2Rs Function as Bitter Taste Receptors , 2000, Cell.

[58]  G. Dahl,et al.  Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium , 2006, FEBS letters.

[59]  S. Kinnamon,et al.  Evidence for a role of glutamate as an efferent transmitter in taste buds , 2010, BMC Neuroscience.

[60]  R. Margolskee,et al.  Molecular cloning of G proteins and phosphodiesterases from rat taste cells , 1994, Physiology & Behavior.

[61]  R. Margolskee,et al.  Umami taste in mice uses multiple receptors and transduction pathways , 2012, The Journal of physiology.

[62]  M. F. Bystrova,et al.  Dispensable ATP permeability of Pannexin 1 channels in a heterologous system and in mammalian taste cells , 2012 .

[63]  N. Chaudhari,et al.  A metabotropic glutamate receptor variant functions as a taste receptor , 2000, Nature Neuroscience.

[64]  G. Dahl,et al.  Pannexin membrane channels are mechanosensitive conduits for ATP , 2004, FEBS letters.

[65]  Sue C Kinnamon,et al.  Amiloride-sensitive channels in type I fungiform taste cells in mouse , 2008, BMC Neuroscience.

[66]  T. Finger,et al.  Nucleoside triphosphate diphosphohydrolase‐2 is the ecto‐ATPase of type I cells in taste buds , 2006, The Journal of comparative neurology.

[67]  Robert F Margolskee,et al.  Afferent neurotransmission mediated by hemichannels in mammalian taste cells , 2007, The EMBO journal.

[68]  T. Shen,et al.  A paracrine signaling role for serotonin in rat taste buds: expression and localization of serotonin receptor subtypes. , 2004, American journal of physiology. Regulatory, integrative and comparative physiology.

[69]  S. Roper,et al.  Cell‐to‐cell communication in intact taste buds through ATP signalling from pannexin 1 gap junction hemichannels , 2009, The Journal of physiology.

[70]  J. Desimone,et al.  Decrease in rat taste receptor cell intracellular pH is the proximate stimulus in sour taste transduction. , 2001, American journal of physiology. Cell physiology.

[71]  N. Chaudhari,et al.  Separate Populations of Receptor Cells and Presynaptic Cells in Mouse Taste Buds , 2006, The Journal of Neuroscience.

[72]  S. Snyder,et al.  High-affinity cAMP phosphodiesterase and adenosine localized in sensory organs , 1993, Brain Research.

[73]  Min Zhang,et al.  P2Y2 receptor activation opens pannexin‐1 channels in rat carotid body type II cells: potential role in amplifying the neurotransmitter ATP , 2012, Journal of Physiology.

[74]  J. C. Kinnamon,et al.  Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway , 2004, The Journal of comparative neurology.

[75]  S. Roper,et al.  Intracellular Ca2+ and TRPM5‐mediated membrane depolarization produce ATP secretion from taste receptor cells , 2010, The Journal of physiology.

[76]  Hitoshi Sakano,et al.  One neuron-one receptor rule in the mouse olfactory system. , 2004, Trends in genetics : TIG.

[77]  K. Torii,et al.  Metabotropic glutamate receptor type 1 in taste tissue. , 2009, The American journal of clinical nutrition.

[78]  Y. Yanagawa,et al.  Action potential-enhanced ATP release from taste cells through hemichannels. , 2010, Journal of neurophysiology.

[79]  M. F. Bystrova,et al.  The ATP permeability of pannexin 1 channels in a heterologous system and in mammalian taste cells is dispensable , 2012, Journal of Cell Science.

[80]  R. Osman,et al.  The heterodimeric sweet taste receptor has multiple potential ligand binding sites. , 2006, Current pharmaceutical design.

[81]  R. Margolskee,et al.  α Gustducin: A Taste Cell Specific G Protein Subunit Closely Related to the α Transducins , 1992 .

[82]  S. Roper,et al.  Autocrine and Paracrine Roles for ATP and Serotonin in Mouse Taste Buds , 2009, The Journal of Neuroscience.

[83]  Jayaram Chandrashekar,et al.  The cells and peripheral representation of sodium taste in mice , 2010, Nature.

[84]  J. C. Kinnamon,et al.  Taste cells with synapses in rat circumvallate papillae display SNAP‐25‐like immunoreactivity , 2000, The Journal of comparative neurology.

[85]  J. C. Kinnamon,et al.  Knocking Out P2X Receptors Reduces Transmitter Secretion in Taste Buds , 2011, The Journal of Neuroscience.

[86]  Nirupa Chaudhari,et al.  Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds. , 2004, Journal of neurophysiology.

[87]  N. Chaudhari,et al.  Taste receptors for umami: the case for multiple receptors. , 2009, The American journal of clinical nutrition.

[88]  A. Robichon,et al.  Coupling of bitter receptor to phosphodiesterase through transducin in taste receptor cells , 1995, Nature.

[89]  E. Delay,et al.  Behavioral responses to glutamate receptor agonists and antagonists implicate the involvement of brain-expressed mGluR4 and mGluR1 in taste transduction for umami in mice , 2012, Physiology & Behavior.