Positive solutions for nonlinear schrödinger–poisson systems with general nonlinearity

In this paper, we study a class of Schrödinger-Poisson (SP) systems with general nonlinearity where the nonlinearity does not require Ambrosetti-Rabinowitz and Nehari monotonic conditions. We establish new estimates and explore the associated energy functional which is coercive and bounded below on Sobolev space. Together with Ekeland variational principle, we prove the existence of ground state solutions. Furthermore, when the ‘charge’ function is greater than a fixed positive number, the (SP) system possesses only zero solutions. In particular, when ‘charge’ function is radially symmetric, we establish the existence of three positive solutions and the symmetry breaking of ground state solutions.

[1]  A. Azzollini Concentration and compactness in nonlinear Schrödinger–Poisson system with a general nonlinearity☆ , 2009, 0906.5356.

[2]  Existence and symmetry breaking of ground state solutions for Schrödinger–Poisson systems , 2021 .

[3]  Chiun-Chuan Chen,et al.  Uniqueness of the ground state solutions of △u+f(u)=0 in Rn, n≥3 , 1991 .

[4]  Antonio Azzollini,et al.  A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations , 2007, math/0703677.

[5]  James Serrin,et al.  Uniqueness of positive radial solutions of Δu+f(u)=0 in ℝn , 1987 .

[6]  I. Ekeland On the variational principle , 1974 .

[7]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[8]  Antonio Azzollini,et al.  On the Schrödinger-Maxwell equations under the effect of a general nonlinear term , 2009, 0904.1557.

[9]  Giusi Vaira,et al.  Ground states for Schrödinger–Poisson type systems , 2011 .

[10]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[11]  David Ruiz,et al.  The Schrödinger–Poisson equation under the effect of a nonlinear local term , 2006 .

[12]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[13]  C. Mercuri,et al.  Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency , 2015, 1507.02837.

[14]  J. Serrin,et al.  UNIQUENESS OF GROUND STATES FOR QUASILINEAR ELLIPTIC EQUATIONS IN THE EXPONENTIAL CASE , 1998 .

[15]  Mathieu Lewin,et al.  The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications , 2020, Calculus of Variations and Partial Differential Equations.

[16]  Fukun Zhao,et al.  On the existence of solutions for the Schrödinger-Poisson equations , 2008 .

[17]  P. Lions,et al.  The concentration-compactness principle in the calculus of variations. The locally compact case, part 2 , 1984 .

[18]  Jian Zhang On the Schrödinger–Poisson equations with a general nonlinearity in the critical growth , 2012 .

[19]  Richard S. Palais,et al.  The principle of symmetric criticality , 1979 .

[20]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[21]  Kevin McLeod,et al.  Uniqueness of Positive Radial Solutions of Δu + f(u) = 0 in ℝ n , II , 1993 .

[22]  Juntao Sun,et al.  Multiplicity of positive solutions for a nonlinear Schrödinger–Poisson system , 2016 .

[23]  Giusi Vaira,et al.  On Concentration of Positive Bound States for the Schrödinger-Poisson Problem with Potentials , 2008 .

[24]  David Ruiz,et al.  Multiple bound states for the Schroedinger-Poisson problem , 2008 .

[25]  Lambertus A. Peletier,et al.  Uniqueness of positive solutions of semilinear equations in ℝn , 1983 .

[26]  M. Kwong,et al.  Uniqueness of the Positive Solution of U + F (u) = 0 in an Annulus , 1991 .

[27]  G. Cerami,et al.  Multiple positive bound states for critical Schrödinger-Poisson systems , 2018, ESAIM: Control, Optimisation and Calculus of Variations.

[28]  Pierre-Louis Lions,et al.  Solutions of Hartree-Fock equations for Coulomb systems , 1987 .

[29]  C. Mercuri,et al.  On a class of nonlinear Schrödinger–Poisson systems involving a nonradial charge density , 2018, Revista Matemática Iberoamericana.

[30]  Two positive solutions to non-autonomous Schrödinger–Poisson systems , 2019, Nonlinearity.

[31]  C. V. Coffman Uniqueness of the ground state solution for Δu−u+u3=0 and a variational characterization of other solutions , 1972 .

[32]  Jaeyoung Byeon,et al.  Standing Waves for Nonlinear Schrödinger Equations with a General Nonlinearity , 2007 .

[33]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[34]  M. Squassina,et al.  Schrodinger-Poisson systems with a general critical nonlinearity , 2015, 1501.01110.

[35]  Vieri Benci,et al.  An eigenvalue problem for the Schrödinger-Maxwell equations , 1998 .

[36]  Fukun Zhao,et al.  Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential , 2013 .

[37]  W. Rother,et al.  Nonlinear scalar field equations , 1992, Differential and Integral Equations.

[38]  Positive bound state solutions for some Schrödinger-Poisson systems , 2016 .

[39]  I. Ekeland Convexity Methods In Hamiltonian Mechanics , 1990 .

[40]  L. Tian,et al.  Existence and asymptotic behavior of solutions for nonlinear Schrödinger-Poisson systems with steep potential well. , 2016, Journal of mathematical physics.

[41]  Jaeduck Jang,et al.  Uniqueness of positive radial solutions of Δu+f(u)=0 in RN, N≥2 , 2010 .

[42]  Antonio Ambrosetti,et al.  On Schrödinger-Poisson Systems , 2008 .

[43]  J. Serrin,et al.  UNIQUENESS OF GROUND STATES FOR QUASILINEAR ELLIPTIC OPERATORS , 1998 .

[44]  B. Gidas,et al.  Symmetry of positive solutions of nonlinear elliptic equations in R , 1981 .

[45]  Huan-Song Zhou,et al.  Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$ , 2007 .

[46]  Giusi Vaira,et al.  Positive solutions for some non-autonomous Schrödinger–Poisson systems , 2010 .

[47]  C. O. Alves,et al.  Schrödinger–Poisson equations without Ambrosetti–Rabinowitz condition☆ , 2011 .