A microstructure fiber two photon source with conjugate laser pumps

We present a systematic experimental study of generating correlated photon pairs using a reversed degenerate four-wave mixing process. By overlapping a pair of parallel- (or cross-) polarized laser pump pulses at conjugate frequencies in a microstructure fiber, parallel- or (cross-) polarized correlated photon pairs are generated at the middle frequency. The generation rate of correlated photons by four-wave mixing with parallel-polarized laser pumps in a 1.8 meter microstructure fiber is comparable or higher than that of a parametric down conversion process in a bulk-crystal at similar pump power levels.

[1]  C. Hong,et al.  Generation of correlated photons via four-wave mixing in optical fibres , 2000, QELS 2000.

[2]  P R Tapster,et al.  erratum , 2002, Nature.

[3]  N. Gisin,et al.  Highly efficient photon-pair source using periodically poled lithium niobate waveguide , 2000 .

[4]  Marius A Albota,et al.  Efficient generation of tunable photon pairs at 0.8 and 1.6 microm. , 2002, Optics letters.

[5]  Kyo Inoue,et al.  Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop , 2004 .

[6]  Christian Kurtsiefer,et al.  High efficiency entangled photon pair collection in type II parametric fluorescence , 2001, quant-ph/0101074.

[7]  R. W. Nicholls,et al.  Application of Nuclear Coincidence Methods to Atomic Transitions in the Wave-length Range λλ 2000-6000 A. , 1955, Nature.

[8]  Lipo Wang,et al.  Correlated photon generation for quantum cryptography : Quantum information technology , 2003 .

[9]  Christopher Edward Kuklewicz,et al.  Ultrabright source of polarization-entangled photons from cavity-enhanced downconversion , 2005 .

[10]  Hong,et al.  Measurement of time delays in the parametric production of photon pairs. , 1985, Physical review letters.

[11]  W Tittel,et al.  Distribution of time-bin entangled qubits over 50 km of optical fiber. , 2004, Physical review letters.

[12]  A. D. Boozer,et al.  Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles , 2003, Nature.

[13]  Jun Chen,et al.  Quantum-correlated twin photons from microstructure fiber. , 2004, Optics express.

[14]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[15]  Jeremie Fulconis,et al.  Photonic crystal fiber source of correlated photon pairs. , 2005 .

[16]  F. Wong,et al.  Efficient and spectrally bright source of polarization-entangled photons , 2004, quant-ph/0409162.

[17]  Shih,et al.  Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion. , 1993, Physical review letters.

[18]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[19]  David C. Burnham,et al.  Observation of Simultaneity in Parametric Production of Optical Photon Pairs , 1970 .

[20]  A. Zeilinger,et al.  Long-Distance Free-Space Distribution of Quantum Entanglement , 2003, Science.

[21]  P. Kumar,et al.  All-fiber photon-pair source for quantum communications , 2002, IEEE Photonics Technology Letters.

[22]  L. Mandel,et al.  Production of squeezed states by combination of parametric down-conversion and harmonic generation☆ , 1984 .

[23]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[24]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .