An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds

Abstract. A workshop was held in the framework of the ACCENT (Atmospheric Composition Change – a European Network) Joint Research Programme on "Aerosols" and the Programme on "Access to Laboratory Data". The aim of the workshop was to hold "Gordon Conference" type discussion covering accommodation and reactive uptake of water vapour and trace pollutant gases on condensed phase atmospheric materials. The scope was to review and define the current state of knowledge of accommodation coefficients for water vapour on water droplet and ice surfaces, and uptake of trace gas species on a variety of different surfaces characteristic of the atmospheric condensed phase particulate matter and cloud droplets. Twenty-six scientists participated in this meeting through presentations, discussions and the development of a consensus review. In this review we present an analysis of the state of knowledge on the thermal and mass accommodation coefficient for water vapour on aqueous droplets and ice and a survey of current state-of the-art of reactive uptake of trace gases on a range of liquid and solid atmospheric droplets and particles. The review recommends consistent definitions of the various parameters that are needed for quantitative representation of the range of gas/condensed surface kinetic processes important for the atmosphere and identifies topics that require additional research.

[1]  Arieh Ben-Naim,et al.  Solvation thermodynamics of nonionic solutes , 1984 .

[2]  W. Haag,et al.  Singlet oxygen in surface waters — Part II: Quantum yields of its production by some natural humic materials as a function of wavelength , 1984 .

[3]  I. Benjamin Theoretical study of ion solvation at the water liquid–vapor interface , 1991 .

[4]  Gerhard Lammel,et al.  WATER NUCLEATION PROPERTIES OF CARBON BLACK AND DIESEL SOOT PARTICLES , 1995 .

[5]  S. Park,et al.  The inhibition of N2O5 hydrolysis in sulfuric acid by 1-butanol and 1-hexanol surfactant coatings. , 2007, The journal of physical chemistry. A.

[6]  U. Pöschl Formation and decomposition of hazardous chemical components contained in atmospheric aerosol particles. , 2002, Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine.

[7]  B. Finlayson‐Pitts,et al.  Adsorption of Atmospherically Relevant Gases at the Air/Water Interface: Free Energy Profiles of Aqueous Solvation of N2, O2, O3, OH, H2O, HO2, and H2O2 , 2004 .

[8]  M. Petters,et al.  Timescale for hygroscopic conversion of calcite mineral particles through heterogeneous reaction with nitric acid. , 2009, Physical chemistry chemical physics : PCCP.

[9]  J. Ponche,et al.  Study of the Uptake of N2O5 by Water and NaCl Solutions , 1994 .

[10]  D. Worsnop,et al.  Heterogeneous uptake of ClONO2 and N2O5 by sulfuric acid solutions , 1997 .

[11]  M. Johnson,et al.  DRIFTS and Knudsen cell study of the heterogeneous reactivity of SO 2 and NO 2 on mineral dust , 2003 .

[12]  C George,et al.  Photoenhanced uptake of gaseous NO2 on solid organic compounds: a photochemical source of HONO? , 2005, Faraday discussions.

[13]  Porous Semiconductor Chalcogenide Aerogels , 2005 .

[14]  J. Abbatt,et al.  Interactions of atmospheric trace gases with ice surfaces: adsorption and reaction. , 2003, Chemical reviews.

[15]  Molecular mechanism of water and ammonia uptake by the liquid/vapor interface of water , 2004 .

[16]  P. Ziemann,et al.  Reaction of oleic acid particles with NO3 radicals: Products, mechanism, and implications for radical-initiated organic aerosol oxidation. , 2006, The journal of physical chemistry. A.

[17]  M. Rossi,et al.  Paper I: Design and construction of a Knudsen-cell reactor for the study of heterogeneous reactions over the temperature range 130–750 K: Performances and limitations , 1997 .

[18]  J. Abbatt,et al.  Gas-Phase Br2 Production in Heterogeneous Reactions of Cl2, HOCl, and BrCl with Halide−Ice Surfaces , 2000 .

[19]  J. Abbatt,et al.  Uptake of gas-phase nitric acid to ice at low partial pressures: evidence for unsaturated surface coverage. , 2005, Faraday discussions.

[20]  M. Matsumoto Molecular dynamics simulation of interphase transport at liquid surfaces , 1996 .

[21]  W. Shiu,et al.  Partitioning of organic chemicals at the air-water interface in environmental systems , 1993 .

[22]  H. Budzinski,et al.  Heterogeneous reactivity of pyrene and 1-nitropyrene with NO2: Kinetics, product yields and mechanism , 2009 .

[23]  A. Chandra,et al.  Dynamics of water molecules at liquid-vapour interfaces of aqueous ionic solutions: effects of ion concentration , 2003 .

[24]  Christian George,et al.  Photosensitized heterogeneous chemistry of ozone on organic films. , 2008, The journal of physical chemistry. A.

[25]  D. Donaldson,et al.  Reactive uptake of ozone by chlorophyll at aqueous surfaces. , 2008, Environmental science & technology.

[26]  M. Pihlatie,et al.  Sulphuric acid closure and contribution to nucleation mode particle growth , 2004 .

[27]  M. Mezei,et al.  Free-Energy Profile of Small Solute Molecules at the Free Surfaces of Water and Ice, as Determined by Cavity Insertion Widom Calculations , 2007 .

[28]  Kinetics of the Reaction between Gaseous Ammonia and Sulfuric Acid Droplets in an Aerosol , 1958 .

[29]  B. Finlayson‐Pitts,et al.  Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles , 1998, Science.

[30]  Kaarle Kupiainen,et al.  New evidence of an organic layer on marine aerosols , 2002 .

[31]  Justin C. Johnson,et al.  Direct experimental validation of the Jones-Ray effect , 2004 .

[32]  H. Allen,et al.  Molecular structure and adsorption of dimethyl sulfoxide at the surface of aqueous solutions , 1999 .

[33]  David M. Cwiertny,et al.  Chemistry and photochemistry of mineral dust aerosol. , 2008, Annual review of physical chemistry.

[34]  Christian George,et al.  Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid , 2006, Nature.

[35]  S. Nizkorodov,et al.  UV photodissociation spectroscopy of oxidized undecylenic acid films. , 2006, The journal of physical chemistry. A.

[36]  T. Vesala,et al.  Models for condensational growth and evaporation of binary aerosol particles , 1997 .

[37]  C. Zetzsch,et al.  Formation of atomic ci from sea spray via photolysis ofnitryl chloride: determination of the sticking coefficient of N205 on NaCl aerosol , 1991 .

[38]  Mark S. Zahniser,et al.  Entry of gas molecules into liquids , 1995 .

[39]  Pavel Jungwirth,et al.  Specific ion effects at the air/water interface. , 2006, Chemical reviews.

[40]  D. R. Hanson,et al.  Mass Accommodation Coefficient of Water: Molecular Dynamics Simulation and Revised Analysis of Droplet Train/Flow Reactor Experiment , 2005 .

[41]  M. Kulmala,et al.  An analytical expression for the rate of binary condensational particle growth , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[42]  A. D. McLean,et al.  Monte Carlo simulation of the liquid-vapor interface of water using an ab initio potential , 1993 .

[43]  Timo Vesala,et al.  Condensation of water vapor: Experimental determination of mass and thermal accommodation coefficients , 2006 .

[44]  J. Abbatt,et al.  Interaction of NO2 with hydrocarbon soot: focus on HONO yield, surface modification, and mechanism. , 2007, The journal of physical chemistry. A.

[45]  R. Vogt,et al.  The heterogeneous reaction of HNO3 on mineral dust and γ-alumina surfaces: a combined Knudsen cell and DRIFTS study , 2004 .

[46]  Astrid Kiendler-Scharr,et al.  On the reactive uptake of gaseous compounds by organic-coated aqueous aerosols: theoretical analysis and application to the heterogeneous hydrolysis of N2O5. , 2006, The journal of physical chemistry. A.

[47]  R. Kurdi,et al.  In-situ Formation of Light-Absorbing Organic Matter in Cloud Water , 2003 .

[48]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[49]  Barbara Noziere,et al.  Light-absorbing aldol condensation products in acidic aerosols: Spectra, kinetics, and contribution to the absorption index , 2007 .

[50]  O. Popovicheva,et al.  Wetting and hydration of insoluble soot particles in the upper troposphere. , 2004, Journal of environmental monitoring : JEM.

[51]  B. C. Garrett,et al.  Molecular Dynamics Simulations of the Liquid/Vapor Interface of SPC/E Water , 1996 .

[52]  M. Rossi,et al.  The nature of the interface and the diffusion coefficient of HCl/ice and HBr/ice in the temperature range 190–205 K , 2003 .

[53]  Y. Rudich,et al.  Multiphase decomposition of novel oxygenated organics in aqueous and organic media. , 2005, Environmental science & technology.

[54]  B. C. Garrett,et al.  ACCOMMODATION OF ALCOHOLS BY THE LIQUID/VAPOR INTERFACE OF WATER : MOLECULAR DYNAMICS STUDY , 1999 .

[55]  Spyros N. Pandis,et al.  CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol , 2008 .

[56]  U. Baltensperger,et al.  Heterogeneous reaction of NO2 on diesel soot particles. , 2001, Environmental science & technology.

[57]  M. Zahniser,et al.  Uptake of sulfur dioxide(G) by aqueous surfaces as a function of pH: the effect of chemical reaction at the interface , 1990 .

[58]  D. Donaldson,et al.  Adsorption of atmospheric gases at the air-water interface. 4: The influence of salts , 2002 .

[59]  N. Magee,et al.  Experimental determination of the deposition coefficient of small cirrus‐like ice crystals near −50°C , 2006 .

[60]  P. Mcmurry,et al.  Mass Accommodation Coefficient for HO 2 Radicals on Aqueous Particles , 1987 .

[61]  E. Kosciuch,et al.  Reply to “Comment on ‘The NH3 Mass Accommodation Coefficient for Uptake onto Sulfuric Acid Solutions'” , 2004 .

[62]  M. Rossi,et al.  The kinetics of H2O vapor condensation and evaporation on different types of ice in the range 130-210 K. , 2006, The journal of physical chemistry. A.

[63]  H. Budzinski,et al.  Heterogeneous reactions of ozone with pyrene, 1-hydroxypyrene and 1-nitropyrene adsorbed on particles , 2009 .

[64]  C. Laffon,et al.  Adsorption of HCl on the water ice surface studied by X-ray absorption spectroscopy. , 2005, The journal of physical chemistry. B.

[65]  A. Robinson,et al.  Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-alkanes, hopanes, and steranes) in motor oil and diesel primary organic aerosols with hydroxyl radicals. , 2009, Environmental science & technology.

[66]  D. Donaldson,et al.  Glancing-angle Raman spectroscopic probe for reaction kinetics at water surfaces. , 2010, Physical chemistry chemical physics : PCCP.

[67]  E. Clementi,et al.  Preliminary observations on a new water–water potential , 2009 .

[68]  B. C. Garrett,et al.  Molecular simulations of the transport of molecules across the liquid/vapor interface of water. , 2006, Chemical reviews.

[69]  A. Vlasenko,et al.  Formation of volatile organic compounds in the heterogeneous oxidation of condensed-phase organic films by gas-phase OH. , 2008, The journal of physical chemistry. A.

[70]  R. Kamens,et al.  Heterogeneous Atmospheric Aerosol Production by Acid-Catalyzed Particle-Phase Reactions , 2002, Science.

[71]  D. R. Hanson,et al.  Reactive and nonreactive uptake on hydrocarbon soot: HNO3, O3, and N2O5 , 2000 .

[72]  R. C. Cohen,et al.  Interpreting the H/D Isotope Fractionation of Liquid Water during Evaporation without Condensation , 2007 .

[73]  T. Peter,et al.  Uncertainties in reactive uptake coefficients for solid stratospheric particles‐1. Surface chemistry , 1997 .

[74]  Andrew Pohorille,et al.  Hydrophobic effects and modeling of biophysical aqueous solution interfaces. , 2002, Chemical reviews.

[75]  T. L. Thompson,et al.  Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds , 2004, Science.

[76]  R. Zepp,et al.  Photochemistry of natural waters , 1984 .

[77]  S. Trasatti,et al.  Adsorption of DMSO at the free surface of water: surface excesses and surface potential shifts in the low concentration range , 1996 .

[78]  Jay Slowik,et al.  Chemical aging of ambient organic aerosol from heterogeneous reaction with hydroxyl radicals , 2008 .

[79]  J. Thornton,et al.  The effect of varying levels of surfactant on the reactive uptake of N 2 O 5 to aqueous aerosol , 2006 .

[80]  D. Donaldson,et al.  Adsorption of Atmospheric Gases at the Air-Water Interface. 2. C1-C4 Alcohols, Acids, and Acetone , 1999 .

[81]  D. Worsnop,et al.  Comment on ``The NH3Mass Accommodation Coefficient for Uptake onto Sulfuric Acid Solution'' , 2004 .

[82]  M. Klein,et al.  MOLECULAR DYNAMICS INVESTIGATION OF THE SURFACE/BULK EQUILIBRIUM IN AN ETHANOL-WATER SOLUTION , 1996 .

[83]  M Zientara,et al.  Temperature dependence of the evaporation coefficient of water in air and nitrogen under atmospheric pressure: study in water droplets. , 2008, The journal of physical chemistry. A.

[84]  M. Rossi,et al.  Heterogeneous chemistry of the NO3 free radical and N2O5 on decane flame soot at ambient temperature: reaction products and kinetics. , 2007, The journal of physical chemistry. A.

[85]  H. Budzinski,et al.  Kinetic Study of the Reactions of Ozone with Polycyclic Aromatic Hydrocarbons Adsorbed on Atmospheric Model Particles , 2006 .

[86]  Diana Rodríguez,et al.  The uptake of SO 2 on Saharan dust: a flow tube study , 2005 .

[87]  A. Nenes,et al.  Atmospheric Chemistry and Physics Cloud Condensation Nuclei Measurements in the Marine Boundary Layer of the Eastern Mediterranean: Ccn Closure and Droplet Growth Kinetics , 2022 .

[88]  T. Vesala,et al.  Theoretical consideration on sticking probabilities , 1996 .

[89]  V. Sadtchenko,et al.  Fast thermal desorption spectroscopy study of morphology and vaporization kinetics of polycrystalline ice films. , 2006, The Journal of chemical physics.

[90]  A. Ravishankara,et al.  Reactive uptake coefficients for N2O5 determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations , 2009 .

[91]  M. Facchini,et al.  Water soluble organic compounds formed by oxidation of soot , 2002 .

[92]  Jared D. Smith,et al.  Quantifying the reactive uptake of OH by organic aerosols in a continuous flow stirred tank reactor. , 2009, Physical chemistry chemical physics : PCCP.

[93]  V. Grassian,et al.  A Knudsen Cell Study of the Heterogeneous Reactivity of Nitric Acid on Oxide and Mineral Dust Particles , 2001 .

[94]  R. Taylor,et al.  Molecular Dynamics Simulations of the Liquid/Vapor Interface of Aqueous Ethanol Solutions as a Function of Concentration , 2005 .

[95]  P. Wiesen,et al.  Heterogeneous conversion of NO2 on carbonaceous surfaces , 1999 .

[96]  Tami C. Bond,et al.  Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change , 2005 .

[97]  C. Girardet,et al.  Molecular atmospheric pollutant adsorption on ice: a theoretical survey , 2001 .

[98]  V. Grassian,et al.  N2O5 hydrolysis on the components of mineral dust and sea salt aerosol: Comparison study in an environmental aerosol reaction chamber , 2006 .

[99]  A. Hanson,et al.  Heterogeneous Reactions in Liquid Sulfuric Acid: HOCl + HCl as a Model System , 1996 .

[100]  E. Clementi,et al.  Study of the structure of molecular complexes. XIII. Monte Carlo simulation of liquid water with a configuration interaction pair potential , 1976 .

[101]  A. Wahner,et al.  Nitrate effect in the heterogeneous hydrolysis of dinitrogen pentoxide on aqueous aerosols , 1999 .

[102]  D. Worsnop,et al.  Experimental isotherms of HCl on H2O ice under stratospheric conditions: connections between bulk and interfacial thermodynamics. , 2004, The Journal of chemical physics.

[103]  W. Lanford,et al.  Rutherford Backscattering to Study the Near-Surface Region of Volatile Liquids and Solids , 2002, Science.

[104]  C. Guimbaud,et al.  Uptake of HNO 3 to deliquescent sea-salt particles: a study using the short-lived radioactive isotope tracer 13 N , 2002 .

[105]  B. Karger,et al.  Study of the interfacial properties of water by gas chromatography , 1973 .

[106]  A. Adamson Physical chemistry of surfaces , 1960 .

[107]  Y. Rudich,et al.  CCN activity and hygroscopic growth of organic aerosols following reactive uptake of ammonia. , 2008, Environmental science & technology.

[108]  Paul E. Wagner,et al.  Mass accommodation and uptake coefficients — a quantitative comparison , 2001 .

[109]  B. Giese,et al.  Multistep electron transfer in oligopeptides: direct observation of radical cation intermediates. , 2005, Angewandte Chemie.

[110]  R. Schwarzenbach,et al.  Adsorption of a diverse set of organic vapors on the bulk water surface. , 2002, Journal of colloid and interface science.

[111]  E. J. Davis,et al.  A history and state-of-the-art of accommodation coefficients , 2006 .

[112]  A. Ravishankara,et al.  Variability in Nocturnal Nitrogen Oxide Processing and Its Role in Regional Air Quality , 2006, Science.

[113]  E. Thibert,et al.  Thermodynamics and Kinetics of the Solid Solution of HCl in Ice , 1997 .

[114]  T. Vesala,et al.  Condensation in the continuum regime , 1991 .

[115]  Peter H. McMurry,et al.  Study of the ammonia (gas)-sulfuric acid (aerosol) reaction rate , 1983 .

[116]  J. Thornton,et al.  Heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization and the role of particle phase , 2008 .

[117]  D. R. Hanson Reaction of N2O5 with H2O on bulk liquids and on particles and the effect of dissolved HNO3 , 1997 .

[118]  R. A. Cox,et al.  Kinetics of the Heterogeneous Reaction of HNO3 with NaCl: Effect of Water Vapor , 1998 .

[119]  M. Molina,et al.  The Reaction Probability of OH on Organic Surfaces of Tropospheric Interest , 2001 .

[120]  R. Turco,et al.  A model for heterogeneous chemical processes on the surfaces of ice and nitric acid trihydrate particles , 1993 .

[121]  M. Tolbert,et al.  Heterogeneous Reaction of Gaseous Nitric Acid on γ-Phase Iron(III) Oxide , 2004 .

[122]  J. Navaza,et al.  Density, Viscosity, and Surface Tension of Aqueous Solutions of Sodium Sulfite and Sodium Sulfite + Sucrose from 25 to 40 .degree.C , 1995 .

[123]  C. Eggleston,et al.  Calcite surface structure observed at microtopographic and molecular scales with atomic force microscopy (AFM) , 1994 .

[124]  M. Ammann,et al.  Atmospheric pressure coated-wall flow-tube study of acetone adsorption on ice. , 2005, The journal of physical chemistry. A.

[125]  M. Molina,et al.  "I Phase equilibria of H2SO 4, HNO 3, and HC! hydrates and the composition of polar stratospheric clouds , 2022 .

[126]  H. Wernli,et al.  Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN) , 2009 .

[127]  R. C. Cohen,et al.  Raman thermometry measurements of free evaporation from liquid water droplets. , 2006, Journal of the American Chemical Society.

[128]  D. Tobias,et al.  Formation of Molecular Bromine from the Reaction of Ozone with Deliquesced NaBr Aerosol: Evidence for Interface Chemistry , 2004 .

[129]  H. Herrmann,et al.  Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides. , 2009, Physical chemistry chemical physics : PCCP.

[130]  G. Biskos,et al.  Ozonolysis of mixed oleic-acid/stearic-acid particles: reaction kinetics and chemical morphology. , 2005, The journal of physical chemistry. A.

[131]  M. Zondlo,et al.  Chemistry and microphysics of polar stratospheric clouds and cirrus clouds. , 2000, Annual review of physical chemistry.

[132]  N. Holmes,et al.  Interaction of methanol, acetone and formaldehyde with ice surfaces between 198 and 223 K , 2002 .

[133]  S. Rice,et al.  Structure of the liquid–vapor interface of water , 1985 .

[134]  D. Donaldson,et al.  Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: a critical review. , 2010, Environmental science & technology.

[135]  B. Vogel,et al.  The loss of NO2, HNO3, NO3/N2O5, and HO2/HOONO2 on soot aerosol: A chamber and modeling study , 2001 .

[136]  V. Grassian,et al.  Heterogeneous conversion of calcite aerosol by nitric acid. , 2007, Physical chemistry chemical physics : PCCP.

[137]  B. Finlayson‐Pitts,et al.  Bromine activation in the troposphere by the dark reaction of O3 with seawater ice , 1998 .

[138]  K. Stemmler,et al.  Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol , 2007 .

[139]  J. Seinfeld,et al.  Water-soluble SOA from Alkene ozonolysis: composition and droplet activation kinetics inferences from analysis of CCN activity , 2010 .

[140]  A. Starik,et al.  Hydration of aircraft engine soot particles under plume conditions: Effect of sulfuric and nitric acid processing , 2007 .

[141]  P. Kumar,et al.  Formation of cloud condensation nuclei by oxidative processing: Unsaturated fatty acids , 2004 .

[142]  David M. Golden,et al.  Very Low-Pressure Pyrolysis (VLPP); A Versatile Kinetic Tool , 1973 .

[143]  Giorgina Corongiu,et al.  Molecular dynamics simulations of liquid water using the NCC ab initio potential , 1990 .

[144]  M. Tolbert,et al.  Heterogeneous uptake of nitric acid on Na‐montmorillonite clay as a function of relative humidity , 2006 .

[145]  James N. Pitts,et al.  Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications , 1999 .

[146]  D. R. Hanson,et al.  The Reaction of CIONO2 with Submicrometer Sulfuric Acid Aerosol , 1995, Science.

[147]  Capillary waves at the liquid-vapor interface and the surface tension of water. , 2006, The Journal of chemical physics.

[148]  M. Rossi,et al.  The reactivity of NO2 and HONO on flame soot at ambient temperature: The influence of combustion conditions , 2000 .

[149]  J. Abbatt,et al.  Kinetics and Product Yields in the Heterogeneous Reactions of HOBr with Ice Surfaces Containing NaBr and NaCl , 2002 .

[150]  Michiel Sprik,et al.  A polarizable model for water using distributed charge sites , 1988 .

[151]  C. Wagner,et al.  The interaction of N 2 O 5 with mineral dust: aerosol flow tube and Knudsen reactor studies , 2007 .

[152]  M. Ammann,et al.  Kinetics of the heterogeneous reaction of nitric acid with mineral dust particles: an aerosol flowtube study. , 2009, Physical chemistry chemical physics : PCCP.

[153]  H. Akimoto,et al.  Heterogeneous loss of HO2 by KCl, synthetic sea salt, and natural seawater aerosol particles , 2009 .

[154]  Yinon Rudich,et al.  Aging of organic aerosol: bridging the gap between laboratory and field studies. , 2007, Annual review of physical chemistry.

[155]  D. R. Worsnop,et al.  Density changes of aerosol particles as a result of chemical reaction , 2004 .

[156]  C. Usher,et al.  Reactions on mineral dust. , 2003, Chemical reviews.

[157]  D. King,et al.  Molecular Beam Investigation of Adsorption Kinetics on Bulk Metal Targets: Nitrogen on Tungsten , 1972 .

[158]  David M. Golden,et al.  Pyrolyse bei sehr kleinem Druck (VLPP); eine vielseitige kinetische Methode , 1973 .

[159]  R. L. Brown Tubular Flow Reactors With First-Order Kinetics. , 1978, Journal of research of the National Bureau of Standards.

[160]  J. Abbatt,et al.  Uptake of Gas-Phase SO2 and H2O2 by Ice Surfaces: Dependence on Partial Pressure, Temperature, and Surface Acidity , 2001 .

[161]  M. Matsumoto,et al.  Study on liquid–vapor interface of water. I. Simulational results of thermodynamic properties and orientational structure , 1988 .

[162]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[163]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[164]  U. Pöschl,et al.  Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone , 2010 .

[165]  John Vieceli,et al.  Accommodation coefficients for water vapor at the air/water interface , 2004 .

[166]  F. Bohr,et al.  Accommodation of ethanol, acetone and benzaldehyde by the liquid vapor interface of water: A molecular dynamics study , 2006 .

[167]  Volker Ebert,et al.  The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols , 2008 .

[168]  R. Niessner,et al.  Interaction of Ozone and Water Vapor with Spark Discharge Soot Aerosol Particles Coated with Benzo[a]pyrene: O3 and H2O Adsorption, Benzo[a]pyrene Degradation, and Atmospheric Implications , 2001 .

[169]  Arvo Lannus,et al.  Gas‐Liquid Reactions , 1970 .

[170]  D. R. Hanson,et al.  Hydrogen chloride/water solid-phase vapor pressures and hydrogen chloride solubility in ice , 1990 .

[171]  C. Santschi,et al.  Uptake of CO2, SO2, HNO3 and HCl on calcite (CaCO3) at 300 K: mechanism and the role of adsorbed water. , 2006, The journal of physical chemistry. A.

[172]  Y. Rudich,et al.  Uptake of Cl and Br by organic surfaces—A perspective on organic aerosols processing by tropospheric oxidants , 2001 .

[173]  Y. Rudich,et al.  Analysis of semivolatile organic compounds in atmospheric aerosols by direct sample introduction thermal desorption GC/MS. , 2001, Environmental science & technology.

[174]  F. Stillinger,et al.  Improved simulation of liquid water by molecular dynamics , 1974 .

[175]  D. R. Hanson Surface-Specific Reactions on Liquids , 1997 .

[176]  K. Stemmler,et al.  The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol , 2008 .

[177]  A. Goodman,et al.  Spectroscopic Study of Nitric Acid and Water Adsorption on Oxide Particles: Enhanced Nitric Acid Uptake Kinetics in the Presence of Adsorbed Water , 2001 .

[178]  J. Reid,et al.  Manipulation and characterization of aqueous sodium dodecyl sulfate/sodium chloride aerosol particles. , 2007, The journal of physical chemistry. A.

[179]  M. Molina,et al.  Interaction of hydrogen chloride with ice surfaces: the effects of grain size, surface roughness, and surface disorder. , 2007, The journal of physical chemistry. A.

[180]  P. Quinn,et al.  Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting , 2009, Proceedings of the National Academy of Sciences.

[181]  A. Pohorille,et al.  Molecular dynamics of phenol at the liquid-vapor interface of water. , 1991, The Journal of chemical physics.

[182]  J. Slowik,et al.  Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change , 2007 .

[183]  S. Canonica,et al.  Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds. , 2005, Environmental science & technology.

[184]  John E. Shilling,et al.  Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds , 2006 .

[185]  M. Zahniser,et al.  The temperature dependence of mass accommodation of sulfur dioxide and hydrogen peroxide on aqueous surfaces , 1989 .

[186]  J. González-Pérez,et al.  The effect of fire on soil organic matter--a review. , 2004, Environment international.

[187]  J. Seinfeld,et al.  Aerosol–cloud drop concentration closure for clouds sampled during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign , 2007 .

[188]  U. Baltensperger,et al.  Identification of Polymers as Major Components of Atmospheric Organic Aerosols , 2004, Science.

[189]  Antony J. Williams,et al.  Assessing the organic composition of urban surface films using nuclear magnetic resonance spectroscopy. , 2006, Chemosphere.

[190]  R. Penner,et al.  The nature of water on surfaces of laboratory systems and implications for heterogeneous chemistry in the troposphere , 2004 .

[191]  Mark S. Zahniser,et al.  Uptake of gas-phase aldehydes by water surfaces , 1992 .

[192]  E. Rideal,et al.  The adsorption of vapours on mercury. I. Non-polar substances , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[193]  A. Pohorille,et al.  Viewpoint 9--molecular structure of aqueous interfaces. , 1993, Journal of molecular structure.

[194]  Cora J Young,et al.  Kinetic and product yield study of the heterogeneous gas-surface reaction of anthracene and ozone. , 2006, The journal of physical chemistry. A.

[195]  J. Abbatt,et al.  Reaction Probabilities for N2O5 Hydrolysis on Sulfuric Acid and Ammonium Sulfate Aerosols at Room Temperature , 1997 .

[196]  R. C. Cohen,et al.  Isotope fractionation of water during evaporation without condensation. , 2005, The journal of physical chemistry. B.

[197]  V. Vaida,et al.  Processing of unsaturated organic acid films and aerosols by ozone , 2003 .

[198]  U. Pöschl,et al.  Kinetic double-layer model of aerosol surface chemistry and gas-particle interactions (K2-SURF): Degradation of polycyclic aromatic hydrocarbons exposed to O 3 , NO 2 , H 2 O, OH and NO 3 , 2009 .

[199]  James T. Hynes,et al.  The stable states picture of chemical reactions. II. Rate constants for condensed and gas phase reaction models , 1980 .

[200]  M. Zahniser,et al.  Uptake of gas-phase alcohol and organic acid molecules by water surfaces , 1991 .

[201]  M. Rossi,et al.  The kinetics of condensation and evaporation of H2O from pure ice in the range 173–223 K: a quartz crystal microbalance study , 2004 .

[202]  M. Molina,et al.  Hydrogen chloride-induced surface disordering on ice. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[203]  R. A. Cox,et al.  Hydrolysis of N2O5 on submicron sulfuric acid aerosols , 2000 .

[204]  Timo Vesala,et al.  Commentary on cloud modelling and the mass accommodation coefficient of water , 2005 .

[205]  A. Bertram,et al.  N2O5 reactive uptake on aqueous sulfuric acid solutions coated with branched and straight-chain insoluble organic surfactants. , 2008, The journal of physical chemistry. A.

[206]  D. Tildesley,et al.  Molecular dynamics simulation of the orthobaric densities and surface tension of water , 1995 .

[207]  J. Crowley,et al.  Interaction of formic and acetic acid with ice surfaces between 187 and 227 K. Investigation of single species- and competitive adsorption. , 2008, Physical chemistry chemical physics : PCCP.

[208]  A. G. Sutugin,et al.  Highly Dispersed Aerosols (Vysokodispersne Aerozoli) , 1971 .

[209]  S. Nizkorodov,et al.  Ozonolysis and photolysis of alkene-terminated self-assembled monolayers on quartz nanoparticles: implications for photochemical aging of organic aerosol particles. , 2006, Physical chemistry chemical physics : PCCP.

[210]  D. Donaldson Adsorption of Atmospheric Gases at the Air−Water Interface. I. NH3 , 1999 .

[211]  A. J. Lovett,et al.  Ozonolysis of oleic acid particles: evidence for a surface reaction and secondary reactions involving Criegee intermediates. , 2005, Physical chemistry chemical physics : PCCP.

[212]  P. Jungwirth,et al.  Impact, Trapping, and Accommodation of Hydroxyl Radical and Ozone at Aqueous Salt Aerosol Surfaces. A Molecular Dynamics Study , 2003 .

[213]  T. Vesala,et al.  Experimental study of sticking probabilities for condensation of nitric acid : water vapor mixtures , 2001 .

[214]  D. Donaldson,et al.  Uptake and reaction of atmospheric organic vapours on organic films. , 2005, Faraday discussions.

[215]  C. George,et al.  Analysis of chemical kinetics at the gas-aqueous interface for submicron aerosols. , 2006, Physical chemistry chemical physics : PCCP.

[216]  Timo Vesala,et al.  Mass and thermal accommodation during gas-liquid condensation of water. , 2004, Physical review letters.

[217]  B. C. Garrett,et al.  Understanding the Mechanism for the Mass Accommodation of Ethanol by a Water Droplet , 1997 .

[218]  N. Fuchs,et al.  HIGH-DISPERSED AEROSOLS , 1971 .

[219]  J. Perlwitz,et al.  Surface radiative forcing by soil dust aerosols and the hydrologic cycle , 2004 .

[220]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[221]  J. Slowik,et al.  Slower CCN growth kinetics of anthropogenic aerosol compared to biogenic aerosol observed at a rural site , 2010 .

[222]  A. Wahner,et al.  Heterogeneous reaction of N2O5 on sodium nitrate aerosol , 1998 .

[223]  B. Anderson,et al.  On the flux of oxygenated volatile organic compounds from organic aerosol oxidation , 2006 .

[224]  I-Feng W. Kuo,et al.  An ab Initio Molecular Dynamics Study of the Aqueous Liquid-Vapor Interface , 2004, Science.

[225]  A. Pohorille,et al.  Adsorption and solvation of ethanol at the water liquid-vapor interface: a molecular dynamics study. , 1997, The journal of physical chemistry. B.

[226]  Y. Balkanski,et al.  Photoenhanced uptake of NO2 on mineral dust: Laboratory experiments and model simulations , 2008 .

[227]  M. Molina,et al.  Atmospheric evolution of organic aerosol , 2004 .

[228]  D. Stedman,et al.  Spectroscopic and Solubility Characteristics of Oxidized Soots , 1991 .

[229]  A. Bertram,et al.  Reactive uptake studies of NO3 and N2O5 on alkenoic acid, alkanoate, and polyalcohol substrates to probe nighttime aerosol chemistry. , 2009, Physical chemistry chemical physics : PCCP.

[230]  J. Abbatt,et al.  Heterogeneous Interactions of OH and HO2 Radicals with Surfaces Characteristic of Atmospheric Particulate Matter , 1996 .

[231]  P. Crutzen,et al.  FTIR studies on lifetime prolongation of stratospheric ice particles due to NAT coating , 1998 .

[232]  Takaharu Tsuruta,et al.  A general expression for the condensation coefficient based on transition state theory and molecular dynamics simulation , 2003 .

[233]  O. Matsuoka,et al.  CI study of the water dimer potential surface , 1976 .

[234]  A. Bertram,et al.  Does atmospheric processing of saturated hydrocarbon surfaces by NO3 lead to volatilization? , 2006 .

[235]  Y. Rudich,et al.  Reactive uptake of ozone by proxies for organic aerosols: Surface versus bulk processes , 2000 .

[236]  Y. Shen,et al.  Surface vibrational spectroscopic study of surface melting of ice. , 2001, Physical review letters.

[237]  G. W. Robinson,et al.  Flexible simple point-charge water in a self-supporting thin film , 1991 .

[238]  G. C. G. Waschewsky,et al.  Heterogeneous Interactions of HOBr, HNO3, O3, and NO2 with Deliquescent NaCl Aerosols at Room Temperature , 1998 .

[239]  E. Clementi,et al.  Water–water interaction potential: An approximation of the electron correlation contribution by a functional of the SCF density matrix , 1984 .

[240]  S. Langer,et al.  The kinetics and mechanism of SO2 oxidation by O3 on mineral dust , 2002 .

[241]  R. Shaw,et al.  Experimental determination of the thermal accommodation and condensation coefficients of water , 1999 .

[242]  A. R. Chughtai,et al.  Effects of air/fuel combustion ratio on the polycyclic aromatic hydrocarbon content of carbonaceous soots from selected fuels , 2004 .

[243]  Jiho Park,et al.  Photochemical aging of secondary organic aerosol particles generated from the oxidation of d-limonene. , 2007, The journal of physical chemistry. A.

[244]  Uptake measurements of dibasic esters by water droplets and determination of their Henry's law constants , 2003 .

[245]  Athanasios Nenes,et al.  Continued development of a cloud droplet formation parameterization for global climate models , 2005 .

[246]  C. Zetzsch,et al.  Interactions of ozone with organic surface films in the presence of simulated sunlight: impact on wettability of aerosols. , 2008, Physical chemistry chemical physics : PCCP.

[247]  J. Crowley,et al.  The heterogeneous reactivity of gaseous nitric acid on authentic mineral dust samples, and on individual mineral and clay mineral components , 2001 .

[248]  H. Allen,et al.  Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops. , 2006, Chemical reviews.

[249]  M. Klein,et al.  Molecular dynamics investigation of an ethanol-water solution , 1996 .

[250]  P. Mirabel,et al.  INVESTIGATION OF THE UPTAKE RATE OF OZONE AND METHYL HYDROPEROXIDE BY WATER SURFACES , 1997 .

[251]  Gyoko Nagayama,et al.  Molecular Dynamics Studies on the Condensation Coefficient of Water , 2004 .

[252]  D. R. Hanson,et al.  Measurement of hydroxyl and hydroperoxy radical uptake coefficients on water and sulfuric acid surfaces , 1992 .

[253]  C. Guimbaud,et al.  Uptake of HNO 3 to deliquescent sea-salt particles , 2002 .

[254]  D. Tildesley,et al.  Molecular dynamics simulation of the non-linear optical susceptibility at the phenol/water/air interface , 1996 .

[255]  H. Lipson Surface Activity , 1962, Nature.

[256]  M. Rossi,et al.  Flame soot generated under controlled combustion conditions: Heterogeneous reaction of NO2 on hexane soot , 2002 .

[257]  J. Crowley,et al.  Heterogeneous Reactivity of Gaseous Nitric Acid on Al2O3, CaCO3, and Atmospheric Dust Samples: A Knudsen Cell Study , 2001 .

[258]  F. Stillinger,et al.  Study of a central force model for liquid water by molecular dynamics , 1975 .

[259]  A. Nenes,et al.  Inferring thermodynamic properties from CCN activation experiments: single-component and binary aerosols , 2007 .

[260]  K. Eisenthal,et al.  Energetics of adsorption of neutral and charged molecules at the air/water interface by second harmonic generation: Hydrophobic and solvation effects , 1991 .

[261]  V. Grassian,et al.  Heterogeneous uptake of ozone on reactive components of mineral dust aerosol: an environmental aerosol reaction chamber study. , 2006, The journal of physical chemistry. A.

[262]  Y. Rudich,et al.  Adsorption of organic compounds pertinent to urban environments onto mineral dust particles , 2004 .

[263]  M. Leu,et al.  Heterogeneous Uptake of Gaseous N2O5by (NH4)2SO4, NH4HSO4, and H2SO4Aerosols , 2001 .

[264]  J. Cain,et al.  Kinetics of heterogeneous reaction of CaCO3 particles with gaseous HNO3 over a wide range of humidity. , 2008, The journal of physical chemistry. A.

[265]  D. Tobias,et al.  Real-Time Monitoring of the Kinetics and Gas-Phase Products of the Reaction of Ozone with an Unsaturated Phospholipid at the Air−Water Interface , 2000 .

[266]  D. Donaldson,et al.  Adsorption of Atmospheric Gases at the Air−Water Interface. 3: Methylamines , 2000 .

[267]  B. Minofar,et al.  Propensities of oxalic, citric, succinic, and maleic acids for the aqueous solution/vapour interface: Surface tension measurements and molecular dynamics simulations , 2008 .

[268]  J. Thornton,et al.  Direct observations of N2O5 reactivity on ambient aerosol particles , 2009 .

[269]  F. Stillinger,et al.  Central-force model for liquid water , 1975 .

[270]  R. A. Cox,et al.  A comprehensive evaluation of water uptake on atmospherically relevant mineral surfaces : DRIFT spectroscopy , thermogravimetric analysis and aerosol growth measurements , 2005 .

[271]  A. Laskin,et al.  A new approach to determining gas-particle reaction probabilities and application to the heterogeneous reaction of deliquesced sodium chloride particles with gas-phase hydroxyl radicals. , 2006, The journal of physical chemistry. A.

[272]  Frank H. Stillinger,et al.  Revised central force potentials for water , 1978 .

[273]  D. Hauglustaine,et al.  On the NO2 + soot reaction in the atmosphere , 1999 .

[274]  R. A. Cox,et al.  Reactive uptake coefficients for heterogeneous reaction of N 2 O 5 with submicron aerosols of NaCl and natural sea salt , 2004 .

[275]  M. Zahniser,et al.  Vapor Pressures of Solid Hydrates of Nitric Acid: Implications for Polar Stratospheric Clouds , 1993, Science.

[276]  Y. Rudich,et al.  Reactive uptake of ozone by proxies for organic aerosols: Surface‐bound and gas‐phase products , 2001 .

[277]  D. Worsnop,et al.  Comment on “Gas-Phase Flow and Diffusion Analysis of the Droplet-Train/Flow-Reactor Technique for the Mass Accommodation Process”† , 2004 .

[278]  S. Canonica,et al.  Oxidation of Phenols by Triplet Aromatic Ketones in Aqueous Solution , 2000 .

[279]  D. F. Ogletree,et al.  Electron Spectroscopy of Aqueous Solution Interfaces Reveals Surface Enhancement of Halides , 2005, Science.

[280]  J. Thornton,et al.  Kinetics of Surface-Bound Benzo[a]pyrene and Ozone on Solid Organic and Salt Aerosols , 2004 .

[281]  G. Golomb,et al.  Glossary of terms related to pharmaceutics (IUPAC Recommendations 2009) , 2009 .

[282]  A. Pohorille,et al.  Structure and Energetics of model amphiphilic molecules at the water liquid-vapor interface. A molecular dynamics study. , 1993, The Journal of physical chemistry.

[283]  J. Jimenez,et al.  Kinetics of submicron oleic acid aerosols with ozone: A novel aerosol mass spectrometric technique , 2002 .

[284]  D. Ferry,et al.  Water adsorption and dynamics on kerosene soot under atmospheric conditions , 2002 .

[285]  R. C. Cohen,et al.  Determination of the Evaporation Coefficient of D2O , 2008 .

[286]  A. Takami,et al.  Uptake coefficient of OH radical on aqueous surface , 1998 .

[287]  R. Cary,et al.  Neutralization of sulfuric acid aerosol by ammonia , 1980 .

[288]  Douglas R. Worsnop,et al.  Products and Mechanisms of Ozone Reactions with Oleic Acid for Aerosol Particles Having Core−Shell Morphologies , 2004 .

[289]  Christian George,et al.  Light changes the atmospheric reactivity of soot , 2010, Proceedings of the National Academy of Sciences.

[290]  D. Golden,et al.  Heterogeneous Atmospheric Reactions: Sulfuric Acid Aerosols as Tropospheric Sinks , 1979, Science.

[291]  M. Johnston,et al.  Reactive uptake of nitric acid onto sodium chloride aerosols across a wide range of relative humidities. , 2006, The journal of physical chemistry. A.

[292]  A. Wisthaler,et al.  Light‐induced ozone depletion by humic acid films and submicron aerosol particles , 2009 .

[293]  H. Herrmann,et al.  Determination of phase transfer parameters for the uptake of HNO3, N2O5 and O3 on single aqueous drops , 2002 .

[294]  T. Thornberry,et al.  Heterogeneous reaction of ozone with liquid unsaturated fatty acids: detailed kinetics and gas-phase product studies , 2004 .

[295]  Peter Spichtinger,et al.  When Dry Air Is Too Humid , 2006, Science.

[296]  Xiuquan Sun,et al.  Solvation of dimethyl succinate in a sodium hydroxide aqueous solution. A computational study. , 2009, The journal of physical chemistry. B.

[297]  L. Dang,et al.  MOLECULAR DYNAMICS STUDY OF WATER CLUSTERS, LIQUID, AND LIQUID-VAPOR INTERFACE OF WATER WITH MANY-BODY POTENTIALS , 1997 .

[298]  J. Thornton,et al.  N2O5 hydrolysis on sub-micron organic aerosols: the effect of relative humidity, particle phase, and particle size , 2003 .

[299]  M. Ammann,et al.  Accommodation coefficient of HOBr on deliquescent sodium bromide aerosol particles , 2002 .

[300]  E. Davis Gas-liquid reactions: By P.V. Danckwerts, McGraw-Hill, 1970. xiii + 276 pp. $11.50 , 1970 .

[301]  David Chandler,et al.  Statistical mechanics of isomerization dynamics in liquids and the transition state approximation , 1978 .

[302]  D. R. Worsnop,et al.  Mass and Thermal Accommodation Coefficients of H2O(g) on Liquid Water as a Function of Temperature , 2001 .

[303]  M. Facchini,et al.  Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis , 2000 .

[304]  M. C. Goh,et al.  Evidence for Adsorbed SO2 at the Aqueous‐Air Interface. , 1995 .

[305]  J. Abbatt,et al.  Release of gas-phase halogens from sodium halide substrates: heterogeneous oxidation of frozen solutions and desiccated salts by hydroxyl radicals , 2008 .

[306]  A. Córdova,et al.  Formation of secondary light‐absorbing “fulvic‐like” oligomers: A common process in aqueous and ionic atmospheric particles? , 2007 .

[307]  J. Hearn,et al.  A chemical ionization mass spectrometry method for the online analysis of organic aerosols. , 2004, Analytical chemistry.

[308]  M. Heal,et al.  Reactive uptake of ozone at simulated leaf surfaces: implications for "non-stomatal" ozone flux , 2009 .

[309]  J. Seinfeld,et al.  Alkene ozonolysis SOA: inferences of composition and droplet growth kinetics from Kohler theory analysis , 2007 .

[310]  P. Mirabel,et al.  MULTIPHASE CHEMISTRY OF N2O5, CLNO2, AND BRNO2 , 1998 .

[311]  A. Archibald,et al.  Heterogeneous uptake of gaseous hydrogen peroxide by Gobi and Saharan dust aerosols: a potential missing sink for H 2 O 2 in the troposphere , 2010 .

[312]  D. Golden,et al.  Heterogeneous Reactions on Model Polar Stratospheric Cloud Surfaces: Reaction of N2O5 on Ice and Nitric Acid Trihydrate. , 1990 .

[313]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[314]  D. Donaldson,et al.  Direct experimental evidence for a heterogeneous reaction of ozone with bromide at the air-aqueous interface. , 2007, The journal of physical chemistry. A.

[315]  M. Heal,et al.  The mass accommodation coefficient of ozone on an aqueous surface , 2002 .

[316]  F. E. Livingston,et al.  EFFECT OF HNO3 AND HCL ON D2O DESORPTION KINETICS FROM CRYSTALLINE D2O ICE , 1998 .

[317]  M. Rossi,et al.  The heterogeneous chemical kinetics of NO3 on atmospheric mineral dust surrogates. , 2005, Physical chemistry chemical physics : PCCP.

[318]  T. Vesala,et al.  The effect of atmospheric nitric acid vapor on cloud condensation nucleus activation , 1993 .

[319]  D. Donaldson,et al.  Suppression of aqueous surface hydrolysis by monolayers of short chain organic amphiphiles. , 2007, Physical chemistry chemical physics : PCCP.

[320]  I. Riipinen,et al.  Adipic and malonic acid aqueous solutions: surface tensions and saturation vapor pressures. , 2007, The journal of physical chemistry. A.

[321]  U. Pöschl,et al.  Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions: Part 2 ? exemplary practical applications and numerical simulations , 2005 .

[322]  R. Taylor,et al.  Molecular-dynamics simulations of the ethanol liquid–vapor interface , 2003 .

[323]  C. Wagner,et al.  An aerosol flow tube study of the interaction of N2O5 with calcite, Arizona dust and quartz , 2009 .

[324]  B. Nozière,et al.  Organic reactions increasing the absorption index of atmospheric sulfuric acid aerosols , 2005 .

[325]  A. Ravishankara,et al.  Reactive uptake of NO3 on pure water and ionic solutions , 1996 .

[326]  J. S. Francisco,et al.  Uptake of the HO2 radical by water: Molecular dynamics calculations and their implications for atmospheric modeling , 2004 .

[327]  T. Peter,et al.  The uptake of acidic gases on ice. , 2006, Chemical reviews.

[328]  L. F. Keyser,et al.  Laboratory Studies of Atmospheric Heterogeneous Chemistry , 1993 .

[329]  P. Wagner A constant-angle Mie scattering method (CAMS) for investigation of particle formation processes , 1985 .

[330]  R. A. Cox,et al.  Reactive uptake of N2O5 by aerosols containing dicarboxylic acids. Effect of particle phase, composition, and nitrate content. , 2009, The journal of physical chemistry. A.

[331]  R. Saykally,et al.  On the nature of ions at the liquid water surface. , 2006, Annual review of physical chemistry.

[332]  D. Donaldson,et al.  Photoenhanced uptake of NO2 by pyrene solid films. , 2008, The journal of physical chemistry. A.

[333]  D. Donaldson,et al.  Enhanced Uptake of PAHs by Organic-Coated Aqueous Surfaces , 2003 .

[334]  Y. Rudich,et al.  Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions – Part 1: General equations, parameters, and terminology , 2005 .

[335]  N. Donahue,et al.  The rate of water vapor evaporation from ice substrates in the presence of HCl and HBr: implications for the lifetime of atmospheric ice particles , 2003 .

[336]  Yinon Rudich,et al.  Reactive Uptake of Ozone by Aerosol-Associated Unsaturated Fatty Acids: Kinetics, Mechanism, and Products , 2002 .

[337]  B. C. Garrett,et al.  Molecular theory of mass transfer kinetics and dynamics at gas–water interface , 2008 .

[338]  A. Curioni,et al.  A molecular approach to understanding complex systems: computational statistical mechanics using state-of-the-art algorithms on terascale computational platforms , 2008 .

[339]  J. Crowley,et al.  Ozone decomposition on Saharan dust: an experimental investigation , 2002 .

[340]  A. Chandra,et al.  Binding of hydrogen bonding solutes at liquid–vapour interfaces of molecular fluids , 2004 .

[341]  J. Thornton,et al.  N(2)O(5) reaction on submicron sea salt aerosol: kinetics, products, and the effect of surface active organics. , 2005, The journal of physical chemistry. A.

[342]  D. Worsnop,et al.  Mass accommodation and chemical reactions at gas-liquid interfaces. , 2006, Chemical reviews.

[343]  M. Rossi,et al.  The heterogeneous decomposition of ozone on atmospheric mineral dust surrogates at ambient temperature , 2006 .

[344]  Sonia M. Kreidenweis,et al.  Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures , 2005 .

[345]  A. Morita Molecular dynamics study of mass accommodation of methanol at liquid–vapor interfaces of methanol/water binary solutions of various concentrations , 2003 .

[346]  A. Petzold,et al.  On the effects of organic matter and sulphur-containing compounds on the CCN activation of combustion particles , 2005 .

[347]  A. Ravishankara,et al.  N2O5 Oxidizes Chloride to Cl2 in Acidic Atmospheric Aerosol , 2008, Science.

[348]  Peter Brimblecombe,et al.  Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds , 2001 .

[349]  B. C. Garrett,et al.  Molecular dynamics simulations of atmospheric oxidants at the air-water interface: solvation and accommodation of OH and O3. , 2005, The journal of physical chemistry. B.

[350]  J. Voigtländer,et al.  Mass accommodation coefficient of water: A combined computational fluid dynamics and experimental data analysis , 2007 .

[351]  R. A. Cox,et al.  Reactive uptake of N2O5 by aerosol particles containing mixtures of humic acid and ammonium sulfate. , 2006, The journal of physical chemistry. A.

[352]  D. Donaldson,et al.  Where does acid hydrolysis take place? , 2009, Physical chemistry chemical physics : PCCP.

[353]  B. Minofar,et al.  Propensity of formate, acetate, benzoate, and phenolate for the aqueous solution/vapor interface: Surface tension measurements and molecular dynamics simulations, , 2007 .

[354]  H. Akimoto,et al.  Kinetics of heterogeneous reactions of HO2 radical at ambient concentration levels with (NH4)2SO4 and NaCl aerosol particles. , 2008, The journal of physical chemistry. A.

[355]  B. Finlayson‐Pitts The tropospheric chemistry of sea salt: a molecular-level view of the chemistry of NaCl and NaBr. , 2003, Chemical reviews.

[356]  Maria Cristina Facchini,et al.  The effect of physical and chemical aerosol properties on warm cloud droplet activation , 2005 .

[357]  Andreas Wahner,et al.  Influence of an organic coating on the reactivity of aqueous aerosols probed by the heterogeneous hydrolysis of N2O5 , 2003 .

[358]  P. Chuang Measurement of the timescale of hygroscopic growth for atmospheric aerosols , 2003 .

[359]  M. Matsumoto,et al.  Liquid–vapor interface of water–methanol mixture. I. Computer simulation , 1993 .

[360]  M. Rossi,et al.  Chemical kinetics of the interaction of H2O vapor with soot in the range 190 K ≤ T ≤ 300 K: A diffusion tube study , 2004 .

[361]  A. Nenes,et al.  Relating CCN activity, volatility, and droplet growth kinetics of β-caryophyllene secondary organic aerosol , 2008 .

[362]  M. Record,et al.  Partitioning of atmospherically relevant ions between bulk water and the water/vapor interface , 2006, Proceedings of the National Academy of Sciences.

[363]  R. C. Cohen,et al.  Determination of the evaporation coefficient of D 2 O , 2008 .

[364]  V. Vaida,et al.  Kinetics and products of the reaction of gas-phase ozone with anthracene adsorbed at the air–aqueous interface , 2004 .

[365]  I. Benjamin Structure, thermodynamics, and dynamics of the liquid/vapor interface of water/dimethylsulfoxide mixtures , 1999 .

[366]  Y. H. Zhang,et al.  Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate , 2006 .

[367]  L. S. Hughes,et al.  Closure between aerosol particles and cloud condensation nuclei at Kaashidhoo Climate Observatory , 2001 .

[368]  P. Ziemann Aerosol products, mechanisms, and kinetics of heterogeneous reactions of ozone with oleic acid in pure and mixed particles. , 2005, Faraday discussions.

[369]  A. Bertram,et al.  Reactive uptake of O3 by multicomponent and multiphase mixtures containing oleic acid. , 2005, The journal of physical chemistry. A.

[370]  Nancy S. Foster,et al.  Thermochemistry of aqueous hydroxyl radical from advances in photoacoustic calorimetry and ab initio continuum solvation theory. , 2004, Journal of the American Chemical Society.

[371]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[372]  J. Abbatt,et al.  Br2 production from the heterogeneous reaction of gas-phase OH with aqueous salt solutions: Impacts of acidity, halide concentration, and organic surfactants. , 2006, The journal of physical chemistry. A.

[373]  D. Donaldson,et al.  Photoenhanced ozone loss on solid pyrene films. , 2009, Physical chemistry chemical physics : PCCP.

[374]  A. Bertram,et al.  Reactive uptake of NO3, N2O5, NO2, HNO3, and O3 on three types of polycyclic aromatic hydrocarbon surfaces. , 2008, The journal of physical chemistry. A.

[375]  M. Mozurkewich EFFECT OF COMPETITIVE ADSORPTION ON POLAR STRATOSPHERIC CLOUD REACTIONS , 1993 .

[376]  R. A. Cox,et al.  Hydrolysis of N2O5 on sub-micron mineral salt aerosols , 2003 .

[377]  Gregory K. Schenter,et al.  Generalized transition state theory in terms of the potential of mean force , 2003 .

[378]  N. Holmes,et al.  Uptake and reaction of HOBr on frozen and dry NaCl/NaBr surfaces between 253 and 233 K , 2002 .

[379]  U. Pöschl,et al.  Coupling aerosol surface and bulk chemistry with a kinetic double layer model (K2-SUB): oxidation of oleic acid by ozone , 2009 .

[380]  Alan Fried,et al.  The reaction probability of N2O5 with sulfuric acid aerosols at stratospheric temperatures and compositions , 1994 .

[381]  M. Rossi Evaluated kinetic and photochemical data for atmospheric chemistry , 2010 .

[382]  H. L. Scott,et al.  The surface tension of water: A Monte Carlo calculation using an umbrella sampling algorithm , 1980 .

[383]  D. R. Hanson Reaction of ClONO2 with H2O and HCl in Sulfuric Acid and HNO3/H2SO4/H2O Mixtures , 1998 .

[384]  A. Bertram,et al.  Reactive uptake of N2O5 on aqueous H2SO4 solutions coated with 1-component and 2-component monolayers. , 2008, The journal of physical chemistry. A.

[385]  D. Worsnop,et al.  Gas-phase diffusion in droplet train measurements of uptake coefficients , 2001 .

[386]  M. Zahniser,et al.  Reactive Uptake of Cl2(g) and Br2(g) by Aqueous Surfaces as a Function of Br- and I- Ion Concentration: The Effect of Chemical Reaction at the Interface , 1995 .

[387]  B. C. Garrett,et al.  Hydroxyl radical at the air-water interface. , 2004, Journal of the American Chemical Society.

[388]  Paul Thomas Griffiths,et al.  Reduction of NO2 to nitrous acid on illuminated titanium dioxide aerosol surfaces: implications for photocatalysis and atmospheric chemistry. , 2006, Chemical communications.

[389]  J. Abbatt Heterogeneous interactions of BrO and ClO: Evidence for BrO surface recombination and reaction with HSO3−/SO32− , 1996 .

[390]  E. Weingartner,et al.  Effect of humidity on nitric acid uptake to mineral dust aerosol particles , 2005 .

[391]  M. Rossi,et al.  The kinetics of the uptake of HNO3 on ice, solid H2SO4–H2O and solid ternary solutions of H2SO4–HNO3–H2O in the temperature range 180–211 K , 2001 .

[392]  J. Thornton,et al.  Measurements of HO2 uptake to aqueous aerosol: Mass accommodation coefficients and net reactive loss , 2005 .

[393]  Robert Vácha,et al.  Water surface is acidic , 2007, Proceedings of the National Academy of Sciences.

[394]  J. D. de Gouw,et al.  Reactive uptake of ozone by liquid organic compounds , 1998 .

[395]  H. Budzinski,et al.  Relative rate constants for the heterogeneous reactions of NO2 and OH radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 2: PAHs adsorbed on diesel particulate exhaust SRM 1650a , 2006 .

[396]  R. Remorov,et al.  Langmuir approach in the study of interface mass transfer , 2005 .

[397]  Y. Rudich Laboratory perspectives on the chemical transformations of organic matter in atmospheric particles. , 2003, Chemical reviews.

[398]  A. Ravishankara,et al.  Measurement of the Mass Accommodation Coefficient of Ozone on Aqueous Surfaces. , 1992 .

[399]  Y. Rudich,et al.  Effects of reversible adsorption and Langmuir–Hinshelwood surface reactions on gas uptake by atmospheric particles , 2003 .

[400]  Charles E. Kolb,et al.  Mass accommodation coefficient of water vapor on liquid water , 2004 .

[401]  Y. Djikaev,et al.  Effect of adsorption on the uptake of organic trace gas by cloud droplets , 2003 .

[402]  A. Pohorille,et al.  Molecular dynamics of the water liquid-vapor interface. , 1987, The Journal of physical chemistry.

[403]  V. Vaida,et al.  The influence of organic films at the air-aqueous boundary on atmospheric processes. , 2006, Chemical reviews.

[404]  Julia Laskin,et al.  High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene. , 2008, Physical chemistry chemical physics : PCCP.