Bendlet transforms: a mathematical perspective

[1]  M. V. Perel,et al.  Wavelet-based integral representation for solutions of the wave equation , 2008, 0809.2211.

[2]  P. Petersen,et al.  Bendlets: A second-order shearlet transform with bent elements , 2016, Applied and Computational Harmonic Analysis.

[3]  Azhar Y. Tantary,et al.  Uncertainty principles for the continuous shearlet transforms in arbitrary space dimensions , 2019, 1906.01263.

[4]  Lakshmanan Akila,et al.  Ridgelet transform for quarternion-valued functions , 2016, Int. J. Wavelets Multiresolution Inf. Process..

[5]  Demetrio Labate,et al.  Characterization and Analysis of Edges Using the Continuous Shearlet Transform , 2009, SIAM J. Imaging Sci..

[6]  Azhar Y. Tantary,et al.  Quaternionic shearlet transform , 2018, Optik.

[7]  M. Cowling,et al.  Bandwidth Versus Time Concentration: The Heisenberg–Pauli–Weyl Inequality , 1984 .

[8]  Lokenath Debnath,et al.  Lecture Notes on Wavelet Transforms , 2017 .

[9]  V. Havin The Uncertainty Principle in Harmonic Analysis , 1994 .

[10]  Demetrio Labate,et al.  Characterization of Piecewise-Smooth Surfaces Using the 3D Continuous Shearlet Transform , 2011, Journal of Fourier Analysis and Applications.

[11]  Azhar Y. Tantary,et al.  Polar Wavelet Transform and the Associated Uncertainty Principles , 2018 .

[13]  Leon Cohen,et al.  The uncertainty principle: global, local, or both? , 2004, IEEE Transactions on Signal Processing.

[14]  Azhar Y. Tantary,et al.  Non-isotropic angular Stockwell transform and the associated uncertainty principles , 2019, Applicable Analysis.

[15]  G. Folland,et al.  The uncertainty principle: A mathematical survey , 1997 .

[16]  E. Candès,et al.  Continuous curvelet transform , 2003 .