Probabilistic metrology attains macroscopic cloning of quantum clocks.

It has recently been shown that probabilistic protocols based on postselection boost the performances of the replication of quantum clocks and phase estimation. Here we demonstrate that the improvements in these two tasks have to match exactly in the macroscopic limit where the number of clones grows to infinity, preserving the equivalence between asymptotic cloning and state estimation for arbitrary values of the success probability. Remarkably, the cloning fidelity depends critically on the number of rationally independent eigenvalues of the clock Hamiltonian. We also prove that probabilistic metrology can simulate cloning in the macroscopic limit for arbitrary sets of states when the performance of the simulation is measured by testing small groups of clones.

[1]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[2]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[3]  Vaidman,et al.  Properties of a quantum system during the time interval between two measurements. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[4]  G. Guo,et al.  Probabilistic Cloning and Identification of Linearly Independent Quantum States , 1998, quant-ph/9804064.

[5]  David J. Starling,et al.  Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values , 2009, 0910.2410.

[6]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[7]  O. Zilberberg,et al.  Charge sensing amplification via weak values measurement. , 2010, Physical review letters.

[8]  G. D’Ariano,et al.  Quantum information becomes classical when distributed to many users. , 2006, Physical review letters.

[9]  David J. Starling,et al.  Ultrasensitive beam deflection measurement via interferometric weak value amplification. , 2009, Physical review letters.

[10]  G. Chiribella,et al.  Optimal asymptotic cloning machines , 2014, 1404.0990.

[11]  C. Simon,et al.  Measuring small longitudinal phase shifts: weak measurements or standard interferometry? , 2009, Physical review letters.

[12]  Enrico Bombieri,et al.  On Siegel's lemma , 1983 .

[13]  Jinyu Xie,et al.  Optimal design and quantum benchmarks for coherent state amplifiers. , 2013, Physical review letters.

[14]  Zhang Jiang,et al.  Quantum limits on probabilistic amplifiers , 2013, 1304.3901.

[15]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[16]  John Calsamiglia,et al.  Beating noise with abstention in state estimation , 2012, 1205.5479.

[17]  J. Fiurášek Optimal probabilistic estimation of quantum states , 2006, quant-ph/0606156.

[18]  R. Filip,et al.  Noise-powered probabilistic concentration of phase information , 2010, 1005.3706.

[19]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Onur Hosten,et al.  Observation of the Spin Hall Effect of Light via Weak Measurements , 2008, Science.

[21]  E Bagan,et al.  Quantum metrology assisted by abstention. , 2012, Physical review letters.

[22]  Geoff J. Pryde,et al.  Heralded noiseless amplification of a photon polarization qubit , 2012, Nature Physics.

[23]  M. Barbieri,et al.  Implementation of a non-deterministic optical noiseless amplifier , 2009, 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology.

[24]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[25]  A. Katok,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION , 1995 .

[26]  Dexter Kozen,et al.  New , 2020, MFPS.

[27]  Shengjun Wu,et al.  Weak measurements beyond the Aharonov-Albert-Vaidman formalism , 2010, 1010.1155.

[28]  Andrew Chi-Chih Yao,et al.  Quantum replication at the Heisenberg limit , 2013, Nature Communications.

[29]  M. Marcus,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[30]  Joonwoo Bae,et al.  Asymptotic quantum cloning is state estimation. , 2006, Physical review letters.

[31]  R. Bellman,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[32]  Estimating preselected and postselected ensembles , 2011, 1106.0405.

[33]  T. Ralph,et al.  Nondeterministic Noiseless Linear Amplification of Quantum Systems , 2009 .

[34]  C. Bruder,et al.  Measuring ultrasmall time delays of light by joint weak measurements. , 2013, Physical review letters.

[35]  M. Bellini,et al.  A high-fidelity noiseless amplifier for quantum light states , 2010, 1004.3399.

[36]  I. Borosh,et al.  A sharp bound for solutions of linear Diophantine equations , 1989 .

[37]  Carlton M. Caves,et al.  Quantum limits on postselected, probabilistic quantum metrology , 2013, 1309.6620.

[38]  Jaromir Fiurasek Optimal probabilistic cloning and purification of quantum states , 2004 .

[39]  E. Bagan,et al.  Optimal parameter estimation with a fixed rate of abstention , 2013, 1306.4861.

[40]  D. Bruß,et al.  Optimal Universal Quantum Cloning and State Estimation , 1997, quant-ph/9712019.

[41]  N. Walk,et al.  Heralded noiseless linear amplification and distillation of entanglement , 2009, 0907.3638.

[42]  P. Marek Optimal probabilistic measurement of phase , 2013, 1307.3070.