Delineating large‐scale migratory connectivity of reed warblers using integrated multistate models

Assessing the extent of large‐scale migratory connectivity is crucial for understanding the evolution of migratory systems and effective species conservation. It has been, however, difficult to elucidate the annual whereabouts of migratory populations of small animals across the annual cycle. Here, we use the reed warbler (Acrocephalus scirpaceus) as one of the most frequently ringed passerines in Europe to demonstrate how ring re‐encounter and geolocator data can be used to effectively quantify range‐wide distribution of different populations.

[1]  S. Bensch,et al.  Cross-continental migratory connectivity and spatiotemporal migratory patterns in the great reed warbler , 2016 .

[2]  S. Bauer,et al.  Timing is crucial for consequences of migratory connectivity , 2016 .

[3]  N. Hölzel,et al.  Global population collapse in a superabundant migratory bird and illegal trapping in China , 2015, Conservation biology : the journal of the Society for Conservation Biology.

[4]  S. Butler,et al.  A pan‐European, multipopulation assessment of migratory connectivity in a near‐threatened migrant bird , 2015 .

[5]  S. Saura,et al.  Wetland Suitability and Connectivity for Trans-Saharan Migratory Waterbirds , 2015, PloS one.

[6]  K. Hobson,et al.  Enriching the isotopic toolbox for migratory connectivity analysis: a new approach for migratory species breeding in remote or unexplored areas , 2015 .

[7]  Steven L Van Wilgenburg,et al.  Migratory connectivity of a Neotropical migratory songbird revealed by archival light-level geolocators. , 2015, Ecological applications : a publication of the Ecological Society of America.

[8]  T Brandt Ryder,et al.  Connectivity of wood thrush breeding, wintering, and migration sites based on range‐wide tracking , 2015, Conservation biology : the journal of the Society for Conservation Biology.

[9]  T. Piersma,et al.  The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only , 2015, Biology Letters.

[10]  F. Korner‐Nievergelt,et al.  Large‐scale spatial analysis of ringing and re‐encounter data to infer movement patterns: A review including methodological perspectives , 2014 .

[11]  S. Bauer,et al.  Migratory Animals Couple Biodiversity and Ecosystem Functioning Worldwide , 2014, Science.

[12]  M. Grüebler,et al.  Equal nonbreeding period survival in adults and juveniles of a long-distant migrant bird , 2014, Ecology and evolution.

[13]  F. Korner‐Nievergelt,et al.  A bird distribution model for ring recovery data: where do the European robins go? , 2014, Ecology and evolution.

[14]  A. Onrubia,et al.  Connectivity in Reed Warblers Acrocephalus scirpaceus Between Breeding Grounds in Europe and Autumn Stopover Sites in Iberia , 2014 .

[15]  K. Hobson,et al.  Using stable hydrogen isotopes (delta H-2) and ring recoveries to trace natal origins in a Eurasian passerine with a migratory divide , 2013 .

[16]  F. Liechti,et al.  Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long-distance migrating songbird , 2013, Oecologia.

[17]  K. Thorup,et al.  Migration of the Common Redstart (Phoenicurus phoenicurus): A Eurasian Songbird Wintering in Highly Seasonal Conditions in the West African Sahel , 2013 .

[18]  R. Yosef,et al.  A comparison of passerine migration in southern and northern Israel , 2013 .

[19]  Simeon Lisovski,et al.  GeoLight – processing and analysing light‐based geolocator data in R , 2012 .

[20]  F. Korner‐Nievergelt,et al.  Migratory connectivity derived from sparse ring reencounter data with unknown numbers of ringed birds , 2012, Journal of Ornithology.

[21]  J. S. Monrós,et al.  Phylogeography of a Habitat Specialist with High Dispersal Capability: The Savi’s Warbler Locustella luscinioides , 2012, PloS one.

[22]  Simeon Lisovski,et al.  Geolocation by light: accuracy and precision affected by environmental factors , 2012 .

[23]  Vsevolod Afanasyev,et al.  The annual cycle of a trans-equatorial Eurasian–African passerine migrant: different spatio-temporal strategies for autumn and spring migration , 2012, Proceedings of the Royal Society B: Biological Sciences.

[24]  Melissa S. Bowlin,et al.  Technology on the Move: Recent and Forthcoming Innovations for Tracking Migratory Birds , 2011 .

[25]  J. Kushlan Living on the Edge: Wetlands and Birds in a Changing Sahel , 2011 .

[26]  K. Stȩpniewska,et al.  Autumn and spring migration of the Reed Warbler Acrocephalus scirpaceus in Egypt—some interesting aspects and questions , 2011 .

[27]  Philip D. Taylor,et al.  Nonbreeding-Season Drivers of Population Dynamics in Seasonal Migrants: Conservation Parallels Across Taxa Facteurs hors reproduction intervenant sur la dynamique des populations de migrateurs saisonniers : analogie entre divers taxons , 2009 .

[28]  Silke Bauer,et al.  The natural link between Europe and Africa – 2.1 billion birds on migration , 2009 .

[29]  R. Robinson,et al.  Declining rates of ring recovery in British birds , 2009 .

[30]  D. Pearson,et al.  Migration patterns and habitat use by passerine and near-passerine migrant birds in eastern Africa , 2008 .

[31]  K. Hobson,et al.  Birds of a feather winter together: migratory connectivity in the Reed Warbler Acrocephalus scirpaceus , 2008, Journal of Ornithology.

[32]  Hugh P. Possingham,et al.  Optimal Conservation of Migratory Species , 2007, PloS one.

[33]  B. Peterjohn,et al.  Birds in Europe: Population Estimates, Trends and Conservation Status , 2006 .

[34]  T. Fransson,et al.  Migration routes of North European Reed Warblers Acrocephalus scirpaceus , 2005, Ornis Svecica.

[35]  F. Bairlein The study of bird migrations – some future perspectives , 2003 .

[36]  Richard T. Holmes,et al.  Variation in survivorship of a migratory songbird throughout its annual cycle , 2002 .

[37]  Susan M. Haig,et al.  Links between worlds: unraveling migratory connectivity , 2002 .

[38]  C. S. Robbins,et al.  Population declines in North American birds that migrate to the neotropics. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Dowsett,et al.  EUROPEAN REED AND MARSH WARBLERS IN AFRICA: MIGRATION PATTERNS, MOULT AND HABITAT , 1987 .

[40]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[41]  Franz Bairlein,et al.  The decline of Afro-Palaearctic migrants and an assessment of potential causes , 2014 .

[42]  T. Alerstam,et al.  When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. , 2014, The Journal of animal ecology.

[43]  S. Bearhop,et al.  Carry-over effects as drivers of fitness differences in animals. , 2011, The Journal of animal ecology.

[44]  A. J. Noordwijk,et al.  Improving the analysis of movement data from marked individuals through explicit estimation of observer heterogeneity , 2010 .

[45]  Byron J. T. Morgan,et al.  Standardising Terminology and Notation for the Analysis of Demographic Processes in Marked Populations , 2009 .

[46]  D. Norris,et al.  THE PAST AND PRESENT OF MIGRATORY CONNECTIVITY , 2006 .

[47]  W. Fiedler,et al.  Using large-scale data from ringed birds for the investigation of effects of climate change on migrating birds: Pitfalls and prospects , 2004 .

[48]  H. Dingle Migration: The Biology of Life on the Move , 1996 .

[49]  R. Schlenker Zum Zug der Neusiedlersee (Österreich)-Population des Teichrohrsängers (Acrocephalus scirpaceus) nach Ringfunden , 1988 .

[50]  A. Perdeck The analysis of ringing data: pitfalls and prospects , 1977 .

[51]  L. Svensson,et al.  The Birds of the Western Palearctic , 1977 .

[52]  T. D. Pigott,et al.  Bird Migration , 1910, Nature.