In Search of the Best Constraint Satisfaction Search

We present the results of an empirical study of several constraint satisfaction search algorithms and heuristics. Using a random problem generator that allows us to create instances with given characteristics, we show how the relative performance of various search methods varies with the number of variables, the tightness of the constraints, and the sparseness of the constraint graph. A version of backjumping using a dynamic variable ordering heuristic is shown to be extremely effective on a wide range of problems. We conducted our experiments with problem instances drawn from the 50% satisfiable range.

[1]  Edward M. Reingold,et al.  Backtrack programming techniques , 1975, CACM.

[2]  David A. McAllester,et al.  A Rearrangement Search Strategy for Determining Propositional Satisfiability , 1988, AAAI.

[3]  Shimon Even,et al.  Graph Algorithms , 1979 .

[4]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[5]  Patrick Prosser,et al.  HYBRID ALGORITHMS FOR THE CONSTRAINT SATISFACTION PROBLEM , 1993, Comput. Intell..

[6]  James M. Crawford,et al.  Experimental Results on the Crossover Point inSatis ability , 1993 .

[7]  Rina Dechter,et al.  Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cutset Decomposition , 1990, Artif. Intell..

[8]  Mark Fox Proceedings of the sixth conference on Artificial intelligence applications , 1990 .

[9]  Peter van Beek,et al.  Constraint Tightness versus Global Consistency , 1994, KR.

[10]  Bernard A. Nadel,et al.  Constraint satisfaction algorithms 1 , 1989, Comput. Intell..

[11]  Paul Walton Purdom,et al.  Search Rearrangement Backtracking and Polynomial Average Time , 1983, Artif. Intell..

[12]  Robert M. Haralick,et al.  Increasing Tree Search Efficiency for Constraint Satisfaction Problems , 1979, Artif. Intell..

[13]  Shmuel Katz,et al.  On the Feasibility of Distributed Constraint Satisfaction , 1991, IJCAI.

[14]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[15]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[16]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[17]  J. Gaschnig Performance measurement and analysis of certain search algorithms. , 1979 .

[18]  Patrick Prosser,et al.  BM + BJ = BMJ , 1993, Proceedings of 9th IEEE Conference on Artificial Intelligence for Applications.