The capacity of quantum channels with side information at the transmitter
暂无分享,去创建一个
[1] Andreas J. Winter. The capacity of the quantum multiple-access channel , 2001, IEEE Trans. Inf. Theory.
[2] Igor Devetak,et al. Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.
[3] Aram W. Harrow,et al. A family of quantum protocols , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[4] A. Winter,et al. Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[5] Peter W. Shor,et al. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.
[6] Ke Li,et al. A Father Protocol for Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.
[7] Igor Devetak,et al. Correcting Quantum Errors with Entanglement , 2006, Science.
[8] I. Devetak,et al. Exact cost of redistributing multipartite quantum states. , 2006, Physical review letters.
[9] I. Devetak,et al. General entanglement-assisted quantum error-correcting codes , 2007, 2007 IEEE International Symposium on Information Theory.
[10] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[11] Igor Devetak,et al. Channel Simulation With Quantum Side Information , 2009, IEEE Transactions on Information Theory.
[12] Andreas J. Winter,et al. A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.
[13] Andreas J. Winter,et al. Entanglement-Assisted Capacity of Quantum Multiple-Access Channels , 2008, IEEE Transactions on Information Theory.
[14] Jack K. Wolf,et al. Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.
[15] Igor Devetak. The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.
[16] Jonathan Oppenheim. State redistribution as merging: introducing the coherent relay , 2008 .
[17] I. Devetak,et al. Classical data compression with quantum side information , 2003 .
[18] S. Lloyd. Capacity of the noisy quantum channel , 1996, quant-ph/9604015.
[19] Andreas J. Winter,et al. Quantum Reverse Shannon Theorem , 2009, ArXiv.
[20] G. Klimovitch,et al. On the classical capacity of a quantum multiple-access channel , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[21] A. Winter,et al. The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[22] Andreas J. Winter,et al. Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.
[23] M. Horodecki,et al. Quantum State Merging and Negative Information , 2005, quant-ph/0512247.
[24] A. Winter,et al. “Squashed entanglement”: An additive entanglement measure , 2003, quant-ph/0308088.