The capacity of quantum channels with side information at the transmitter

We consider the problem of coding for quantum channels with side information that is available ahead of time at the transmitter but not at the receiver. We find a single-letter expression for the entanglement-assisted quantum capacity of such channels which closely parallels Gel'fand and Pinsker's solution to the classical version of the same problem.

[1]  Andreas J. Winter The capacity of the quantum multiple-access channel , 2001, IEEE Trans. Inf. Theory.

[2]  Igor Devetak,et al.  Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.

[3]  Aram W. Harrow,et al.  A family of quantum protocols , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[4]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[6]  Ke Li,et al.  A Father Protocol for Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.

[7]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[8]  I. Devetak,et al.  Exact cost of redistributing multipartite quantum states. , 2006, Physical review letters.

[9]  I. Devetak,et al.  General entanglement-assisted quantum error-correcting codes , 2007, 2007 IEEE International Symposium on Information Theory.

[10]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[11]  Igor Devetak,et al.  Channel Simulation With Quantum Side Information , 2009, IEEE Transactions on Information Theory.

[12]  Andreas J. Winter,et al.  A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.

[13]  Andreas J. Winter,et al.  Entanglement-Assisted Capacity of Quantum Multiple-Access Channels , 2008, IEEE Transactions on Information Theory.

[14]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[15]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[16]  Jonathan Oppenheim State redistribution as merging: introducing the coherent relay , 2008 .

[17]  I. Devetak,et al.  Classical data compression with quantum side information , 2003 .

[18]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[19]  Andreas J. Winter,et al.  Quantum Reverse Shannon Theorem , 2009, ArXiv.

[20]  G. Klimovitch,et al.  On the classical capacity of a quantum multiple-access channel , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[21]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[23]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[24]  A. Winter,et al.  “Squashed entanglement”: An additive entanglement measure , 2003, quant-ph/0308088.