On Modal Logics of Linear Inequalities

We consider probabilistic modal logic, graded modal logic and stochastic modal logic, where linear inequalities may be used to express numerical constraints between quantities. For each of the logics, we construct a cut-free sequent calculus and show soundness with respect to a natural class of models. The completeness of the associated sequent calculi is then established with the help of coalgebraic semantics which gives completeness over a (typically much smaller) class of models. With respect to either semantics, it follows that the satisfiability problem of each of these logics is decidable in polynomial space.

[1]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[2]  Lutz Schröder,et al.  A finite model construction for coalgebraic modal logic , 2006, J. Log. Algebraic Methods Program..

[3]  Eric Pacuit,et al.  Majority Logic , 2004, KR.

[4]  Dirk Pattinson,et al.  Coalgebraic modal logic: soundness, completeness and decidability of local consequence , 2003, Theor. Comput. Sci..

[5]  Ronald Fagin,et al.  Reasoning about knowledge and probability , 1988, JACM.

[6]  Corina Cîrstea,et al.  EXPTIME Tableaux for the Coalgebraic µ-Calculus , 2009, CSL.

[7]  Dirk Pattinson,et al.  EXPTIME Tableaux for the Coalgebraic µ-Calculus , 2009, CSL.

[8]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[9]  Ian Horrocks,et al.  Optimizing Terminological Reasoning for Expressive Description Logics , 2007, Journal of Automated Reasoning.

[10]  Dirk Pattinson,et al.  PSPACE Bounds for Rank-1 Modal Logics , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[11]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[12]  Rajeev Goré,et al.  Global Caching for Coalgebraic Description Logics , 2010, IJCAR.

[13]  Rajeev Goré,et al.  Optimal Tableau Algorithms for Coalgebraic Logics , 2010, TACAS.

[14]  Aviad Heifetz,et al.  Probability Logic for Type Spaces , 2001, Games Econ. Behav..

[15]  Stephan Tobies PSPACE Reasoning for Graded Modal Logics , 2001, J. Log. Comput..

[16]  Dirk Pattinson,et al.  Cut elimination in coalgebraic logics , 2010, Inf. Comput..

[17]  Kit Fine,et al.  In so many possible worlds , 1972, Notre Dame J. Formal Log..

[18]  Ian Horrocks,et al.  Optimizing Description Logic Subsumption , 1999, J. Log. Comput..

[19]  Dirk Pattinson,et al.  Nominals for Everyone , 2009, IJCAI.

[20]  Ronald Fagin,et al.  A logic for reasoning about probabilities , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.