Piercing convex sets and the hadwiger-debrunner (p
暂无分享,去创建一个
[1] E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .
[2] H. Hadwiger,et al. Über eine Variante zum Hellyschen Satz , 1957 .
[3] B. Grünbaum. On intersections of similar sets , 1959 .
[4] V. Klee,et al. Helly's theorem and its relatives , 1963 .
[5] V. Klee,et al. Combinatorial Geometry in the Plane , 1964 .
[6] G. Wegner,et al. Über eine kombinatorisch-geometrische Frage von Hadwiger und Debrunner , 1965 .
[7] H. Tverberg. A Generalization of Radon's Theorem , 1966 .
[8] V. L. Dol'nikov. A coloring problem , 1972 .
[9] B. E. Fullbright. Intersectional properties of certain families of compact convex sets. , 1974 .
[10] G. Wegner,et al. d-Collapsing and nerves of families of convex sets , 1975 .
[11] M. Katchalski,et al. A Problem of Geometry in R n , 1979 .
[12] M. Katchalski,et al. A problem of geometry in ⁿ , 1979 .
[13] Imre Bárány,et al. A generalization of carathéodory's theorem , 1982, Discret. Math..
[14] Z. Füredi,et al. The number of triangles covering the center of an n-set , 1984 .
[15] Noga Alon,et al. A Simple Proof of the Upper Bound Theorem , 1985, Eur. J. Comb..
[16] Jürgen Eckhoff,et al. An Upper-Bound theorem for families of convex sets , 1985 .
[17] Emo Welzl,et al. Partition trees for triangle counting and other range searching problems , 1988, SCG '88.
[18] N. Alon,et al. Parallel Linear Programming in Fixed Dimension Almost Surely in Constant Time , 1990, IEEE Annual Symposium on Foundations of Computer Science.
[19] Noga Alon,et al. Point Selections and Weak ε-Nets for Convex Hulls , 1992, Combinatorics, Probability and Computing.
[20] J. Eckhoff. Helly, Radon, and Carathéodory Type Theorems , 1993 .
[21] Jörg M. Wills,et al. Handbook of Convex Geometry , 1993 .