Cryogenic surface ion trap based on intrinsic silicon

Trapped ions are pre-eminent candidates for building quantum information processors and quantum simulators. To scale such systems to more than a few tens of ions it is important to tackle the observed high ion-heating rates and create scalable trap structures which can be simply and reliably produced. Here, we report on cryogenically operated intrinsic-silicon ion traps which can be rapidly and easily fabricated using standard semiconductor technologies. Single 40Ca+ ions have been trapped and used to characterize the trap operation. Long ion lifetimes were observed with the traps exhibiting heating rates as low as 0.33 phonons s?1 at an ion-electrode distance of 230 ?m. These results open many new avenues to arrays of micro-fabricated ion traps.

[1]  Isaac L. Chuang,et al.  Laser-induced charging of microfabricated ion traps , 2011, 1108.0092.

[2]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[3]  Rajeev J Ram,et al.  Ion traps fabricated in a CMOS foundry , 2014, 1406.3643.

[4]  Curtis Volin,et al.  Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation , 2012, 1204.4147.

[5]  F. Leupold,et al.  Quantum control of the motional states of trapped ions through fast switching of trapping potentials , 2012, 1208.3986.

[6]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[7]  Isaac L. Chuang,et al.  Demonstration of a scalable, multiplexed ion trap for quantum information processing , 2009, Quantum Inf. Comput..

[8]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[9]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[10]  J. Krupka,et al.  Measurements of Permittivity, Dielectric Loss Tangent, and Resistivity of Float-Zone Silicon at Microwave Frequencies , 2006, IEEE Transactions on Microwave Theory and Techniques.

[11]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[12]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[13]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[14]  R. Blatt,et al.  Ion-trap measurements of electric-field noise near surfaces , 2014, 1409.6572.

[15]  Winfried K. Hensinger,et al.  Microfabricated ion traps , 2011, 1101.3207.

[16]  David J. Wineland,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[17]  Arkadas Ozakin,et al.  Stability analysis of ion motion in asymmetric planar ion traps , 2012 .

[18]  Wolfgang Hansel,et al.  Trapped-ion probing of light-induced charging effects on dielectrics , 2010, 1004.4842.

[19]  F. Schmidt-Kaler,et al.  Fabrication and heating rate study of microscopic surface electrode ion traps , 2010, 1009.2834.

[20]  David J. Wineland,et al.  Laser-Cooled Mercury Ion Frequency Standard , 1998 .

[21]  F. Schmidt-Kaler,et al.  Simple and efficient photo-ionization loading of ions for precision ion-trapping experiments , 2001 .

[22]  Makoto Motoyoshi,et al.  Through-Silicon Via (TSV) , 2009, Proceedings of the IEEE.

[23]  John Clarke,et al.  Heralded state preparation in a superconducting qubit. , 2012, Physical review letters.

[24]  K. Brown,et al.  Modular cryostat for ion trapping with surface-electrode ion traps. , 2013, The Review of scientific instruments.

[25]  Jaroslaw Labaziewicz,et al.  Temperature dependence of electric field noise above gold surfaces. , 2008, Physical review letters.

[26]  Tarik Bourouina,et al.  Accelerated Publication: Deep reactive ion etching of sub-micrometer trenches with ultra high aspect ratio , 2014 .

[27]  Karl Berggren,et al.  Superconducting microfabricated ion traps , 2010, 1010.6108.

[28]  Rainer Blatt,et al.  Two-dimensional arrays of radio-frequency ion traps with addressable interactions , 2011, 1103.5428.

[29]  D. M. Lucas,et al.  Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap , 2011, 1105.4864.

[30]  Patrick Gill,et al.  A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. , 2012, Nature nanotechnology.

[31]  M de Podesta,et al.  Acoustic gas thermometry , 2014 .

[32]  D Schuster,et al.  Cryogenic ion trapping systems with surface-electrode traps. , 2008, The Review of scientific instruments.

[33]  Andreas Jechow,et al.  Imaging of trapped ions with a microfabricated optic for quantum information processing. , 2010, Physical review letters.

[34]  R. Blatt,et al.  Compact radio-frequency resonator for cryogenic ion traps. , 2012, The Review of scientific instruments.

[35]  S. Massar,et al.  Quantum information processing and communication , 2005 .

[36]  P Srinivasan,et al.  Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip , 2014, Nature Communications.

[37]  M. Drewsen,et al.  Efficient ground-state cooling of an ion in a large room-temperature linear Paul trap with a sub-Hertz heating rate , 2012 .

[38]  Jay M. Gambetta,et al.  Improved superconducting qubit coherence using titanium nitride , 2013, 1303.4071.

[39]  Robert M. Jopson,et al.  System design for large-scale ion trap quantum information processor , 2005, Quantum Inf. Comput..

[40]  J. Britton,et al.  Scalable arrays of rf Paul traps in degenerate Si , 2009, 0908.1591.