Local impact effects of hard missiles on concrete targets

Abstract This paper presents the recent progress in formulating and modeling local impact effects in concrete targets struck by hard missiles. New research results in this area are also presented, these being part of the UK nuclear safety program against impact threats on concrete structures in nuclear power stations conducted under the auspices of Magnox Electric. Failure mechanisms are classified based primarily on experimental evidence. First, a collection of empirical formulae to predict the penetration depth, scabbing thickness and perforation thickness is presented in both Imperial and SI units. The current status of various design codes is then summarized. Based on a dimensional analysis, dominant non-dimensional parameters that may influence the local impact effects on concrete targets are obtained and then used to present some of the test data. Various nose shape factors are compared and a unique definition of the nose shape factor is suggested. Analytical models and numerical simulation methods for penetration are summarized. Criticisms are made for the current understanding of the effects of strain rate on the unconfined uniaxial compressive strength of concrete-like materials based on measurements by the split Hopkinson pressure bar technique.

[1]  Darren L. Rice Finite Element Analysis of Concrete Subjected to Ordnance Velocity Impact , 1992 .

[2]  Thomas L. Warren Simulations of the penetration of limestone targets by ogive-nose 4340 steel projectiles , 2002 .

[3]  D. B. Longcope,et al.  Penetration into ductile metal targets with rigid spherical-nose rods , 1995 .

[4]  S. Nemat-Nasser,et al.  Compression‐induced nonplanar crack extension with application to splitting, exfoliation, and rockburst , 1982 .

[5]  A. N. Dancygier,et al.  Rear Face Damage of Normal and High-Strength Concrete Elements Caused by Hard Projectile Impact , 1998 .

[6]  Han Zhao,et al.  A STUDY ON TESTING TECHNIQUES FOR CONCRETE-LIKE MATERIALS UNDER COMPRESSIVE IMPACT LOADING , 1998 .

[7]  Kai Xu,et al.  Modelling of dynamic behaviour of concrete materials under blast loading , 2004 .

[8]  M. Y. H. Bangash,et al.  CONCRETE AND CONCRETE STRUCTURES: NUMERICAL MODELLING AND APPLICATIONS , 1989 .

[9]  S. Nemat-Nasser,et al.  Brittle failure in compression: splitting faulting and brittle-ductile transition , 1986, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[10]  Mazen R. Tabbara,et al.  Simulations of the Penetration of 6061-T6511 Aluminum Targets by Spherical-Nosed VAR 4340 Steel Projectiles , 2000 .

[11]  N. Jones,et al.  Shear and adiabatic shear failures in an impulsively loaded fully clamped beam , 1999 .

[12]  M. J. Forrestal,et al.  Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths , 1992 .

[13]  David Z. Yankelevsky,et al.  A SIMPLIFIED ANALYTICAL METHOD FOR SOIL PENETRATION ANALYSIS , 1980 .

[14]  T. L. Warren,et al.  Penetration into low-strength (23MPa) concrete: target characterization and simulations , 2004 .

[15]  N. S. Ottosen,et al.  Failure and elasticity of concrete , 1975 .

[16]  Joseph W. Tedesco,et al.  Moisture and Strain Rate Effects on Concrete Strength , 1996 .

[17]  Qingming Li,et al.  Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile , 2003 .

[18]  K. Fullard,et al.  The assessment of impact on nuclear power plant structures in the United Kingdom , 1991 .

[19]  M. J. Forrestal,et al.  Penetration of concrete targets with ogive-nose steel rods , 1998 .

[20]  M. Forrestal,et al.  Penetration of concrete targets with deceleration-time measurements , 2003 .

[21]  G. Fiquet,et al.  Study of the perforation of reinforced concrete slabs by rigid missiles —Experimental study, part II , 1977 .

[22]  T. Charlton Progress in Solid Mechanics , 1962, Nature.

[23]  Achintya Haldar,et al.  Local Effect of Solid Missiles on Concrete Structures , 1984 .

[24]  H. Hansson,et al.  Experimental and numerical studies of projectile perforation in concrete targets , 2000 .

[25]  L. E. Malvern,et al.  Rate Effects in Uniaxial Dynamic Compression of Concrete , 1992 .

[26]  Min Zhou,et al.  Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization , 2001 .

[27]  M. J. Forrestal,et al.  Dynamic Spherical Cavity-Expansion in a Compressible Elastic-Plastic Solid , 1988 .

[28]  P. Rossi,et al.  Effect of loading rate on the strength of concrete subjected to uniaxial tension , 1994 .

[29]  M. A. Erki,et al.  REVIEW OF EFFECTS OF LOADING RATE ON REINFORCED CONCRETE , 1991 .

[30]  Wen S. Chang,et al.  Impact of Solid Missiles on Concrete Barriers , 1981 .

[31]  P.S.Bulson Explosive loading of engineering structures , 1997 .

[32]  Guruswami Ravichandran,et al.  A micromechanical model for high strain rate behavior of ceramics , 1995 .

[33]  Martin S. Williams MODELING OF LOCAL IMPACT EFFECTS ON PLAIN AND REINFORCED CONCRETE , 1994 .

[34]  Jorge Daniel Riera Penetration, scabbing and perforation of concrete structures hit by solid missiles , 1989 .

[35]  Wei Sun,et al.  Characteristics of high-performance steel fiber-reinforced concrete subject to high velocity impact , 2000 .

[36]  Frédéric-Victor Donzé,et al.  Numerical simulations of impacts using a discrete element method , 1998 .

[37]  Zvi Rosenberg,et al.  Numerical study of the transition from rigid to eroding-rod penetration , 2003 .

[38]  M. Kavyrchine,et al.  Study of the perforation of reinforced concrete slabs by rigid missiles —General introduction and experimental study, part I , 1977 .

[39]  H. M. Wen,et al.  Penetration and perforation of thick FRP laminates , 2001 .

[40]  A. N. Dancygier,et al.  High strength concrete response to hard projectile impact , 1996 .

[41]  Qingming Li,et al.  Transition from nondeformable projectile penetration to semihydrodynamic penetration , 2004 .

[42]  Liu Tong,et al.  A semi-analytical model for truncated-ogive-nose projectiles penetration into semi-infinite concrete targets , 2000 .

[43]  Rami Masri,et al.  Dynamic spherical cavity expansion in a pressure sensitive elastoplastic medium , 2004 .

[44]  G. G. Corbett,et al.  Impact loading of plates and shells by free-flying projectiles: A review , 1996 .

[45]  David Z. Yankelevsky,et al.  Local response of concrete slabs to low velocity missile impact , 1997 .

[46]  J. D. Murff,et al.  Low Velocity Penetration of Kaolin Clay , 1973 .

[47]  M. J. Forrestal,et al.  Penetration Experiments with Limestone Targets and Ogive-Nose Steel Projectiles , 2000 .

[48]  L. Javier Malvar,et al.  Review of Strain Rate Effects for Concrete in Tension , 1998 .

[49]  Norval Dobbs,et al.  Structures to Resist the Effects of Accidential Explosions. Volume 4. Reinforced Concrete Design , 1987 .

[50]  J. G. Hetherington,et al.  A note on the behind armour effects from perforated alumina/aluminium targets , 1998 .

[51]  Sia Nemat-Nasser,et al.  Strain-rate effect on brittle failure in compression , 1994 .

[52]  Q. M. Li,et al.  Penetration Into Concrete Targets By A Hard Projectile , 2002 .

[53]  S. C. Hunter,et al.  The Dynamic Compression Testing of Solids by the Method of the Split Hopkinson Pressure Bar , 1963 .

[54]  D. Tzou,et al.  A spherical cavity-expansion penetration model for concrete targets , 1997 .

[55]  E. B. Mayfield,et al.  Dynamics of a Projectile Penetrating Sand , 1957 .

[56]  M. J. Forrestal,et al.  Penetration of 6061-T651 Aluminum Targets With Rigid Long Rods , 1988 .

[57]  Andrzej Winnicki,et al.  Plastic Model for Concrete in Plane Stress State. I: Theory , 1998 .

[58]  N. Mott,et al.  The theory of indentation and hardness tests , 1945 .

[59]  Norman Jones,et al.  Structures Under Shock and Impact VI , 2006 .

[60]  N. S. Brar,et al.  PENETRATION OF GROUT AND CONCRETE TARGETS WITH OGIVE-NOSE STEEL PROJECTILES , 1996 .

[61]  Anil K. Kar,et al.  Local Effects of Tornado-Generated Missiles , 1978 .

[62]  M. J. Forrestal,et al.  Dynamic Spherical Cavity Expansion of Strain-Hardening Materials , 1991 .

[63]  C. Berriaud,et al.  Comportement local des enceintes en beton sous l'impact d'un projectile rigide: Local behaviour of reinforced concrete walls under missile impact☆ , 1978 .

[64]  H. Adeli,et al.  Local effects of impactors on concrete structures , 1985 .

[65]  B. S. Altman,et al.  An empirical equation for penetration depth of ogive-nose projectiles into concrete targets , 1994 .

[66]  M. J. Forrestal,et al.  Penetration Limit Velocity for Ogive-Nose Projectiles and Limestone Targets , 2002 .

[67]  Sanjay Govindjee,et al.  Anisotropic modelling and numerical simulation of brittle damage in concrete , 1995 .

[68]  J. W. Tedesco,et al.  Effects of Strain Rate on Concrete Strength , 1995 .

[69]  Thomas L. Warren,et al.  Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations , 2001 .

[70]  W. Goldsmith,et al.  Dynamic behavior of concrete , 1966 .

[71]  M. J. Forrestal,et al.  Penetration into soil targets , 1992 .

[72]  E. P. Chen Numerical Simulation of Dynamic Fracture of Concrete Targets Impacted by Steel Rods1 , 1994 .

[73]  Gareth Hughes,et al.  Hard missile impact on reinforced concrete , 1984 .

[74]  F. Heuze,et al.  AN OVERVIEW OF PROJECTILE PENETRATION INTO GEOLOGICAL MATERIALS, WITH EMPHASIS ON ROCKS , 1990 .

[75]  Thomas L. Warren,et al.  Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations , 2004 .

[76]  J. V. Rotz,et al.  Design of structures for missile impact , 1974 .

[77]  R. P. Kennedy,et al.  Probabilistic assessment of aircraft hazard for nuclear power plants , 1972 .

[78]  Qingming Li,et al.  Deep penetration of a non-deformable projectile with different geometrical characteristics , 2002 .

[79]  M. A. Erki,et al.  Review of Effects of Loading Rate on Concrete in Compression , 1991 .

[80]  Qingming Li,et al.  About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test , 2003 .

[81]  Joseph W. Tedesco,et al.  Strain-rate-dependent constitutive equations for concrete , 1998 .

[82]  Ghatu Subhash,et al.  Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids , 2003 .

[83]  C. Berriaud,et al.  Study of the perforation of reinforced concrete slabs by rigid missiles —Experimental study, part III , 1977 .

[84]  H. M. Wen,et al.  PREDICTING THE PENETRATION AND PERFORATION OF TARGETS STRUCK BY PROJECTILES AT NORMAL INCIDENCE* , 2002 .

[85]  Leon M Keer,et al.  Elastic-cracked model for penetration into unreinforced concrete targets with ogival nose projectiles , 1997 .

[86]  L. E. Malvern,et al.  Dynamic Response of Concrete and Concrete Structures. , 1986 .

[87]  Y. Gupta,et al.  Local response of reinforced concrete to missile impacts , 1978 .

[88]  Wai-Fah Chen,et al.  Constitutive modeling in analysis of concrete structures , 1987 .

[89]  Comite Euro-International du Beton,et al.  CEB-FIP Model Code 1990 , 1993 .

[90]  R. P. Kennedy A review of procedures for the analysis and design of concrete structures to resist missile impact effects , 1976 .

[91]  T. L. Warren,et al.  Penetration of 6061-T6511 aluminum targets by ogive-nose steel projectiles with striking velocities between 0.5 and 3.0 km/s , 1999 .

[92]  John Hetherington,et al.  Blast and ballistic loading of structures , 1994 .

[93]  M. J. Forrestal,et al.  Penetration Experiments with 6061-T6511 Aluminum Targets and Spherical-Nose Steel Projectiles at Striking Velocities Between 0.5 and 3.0 km/s , 2000 .

[94]  Qingming Li,et al.  Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments , 2003 .

[95]  S. H. Perry,et al.  Compressive behaviour of concrete at high strain rates , 1991 .

[96]  M. D. Adley,et al.  A meshless treatment of three-dimensional penetrator targets for parallel computation , 2000 .

[97]  L. Malvar,et al.  A PLASTICITY CONCRETE MATERIAL MODEL FOR DYNA3D , 1997 .

[98]  Weinong W Chen,et al.  Pulse shaping techniques for testing brittle materials with a split hopkinson pressure bar , 2002 .

[99]  Merit P White,et al.  EFFECTS OF IMPACT AND EXPLOSION , 1946 .

[100]  L. D. Bertholf,et al.  Two-dimensional analysis of the split hopkinson pressure bar system☆ , 1975 .

[101]  Isao Kojima,et al.  An experimental study on local behavior of reinforced concrete slabs to missile impact , 1991 .

[102]  M. J. Forrestal,et al.  A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials , 2001 .

[103]  S. L. Rice,et al.  Impact strength of materials , 1972 .

[104]  Qingming Li,et al.  A modified model for the penetration into moderately thick plates by a rigid, sharp-nosed projectile , 2004 .

[105]  William K. Rule,et al.  On the optimal nose geometry for a rigid penetrator, including the effects of pressure-dependent friction , 2000 .

[106]  George E. Sliter,et al.  Assessment of Empirical Concrete Impact Formulas , 1980 .

[107]  P. P. Degen Perforation of Reinforced Concrete Slabs by Rigid Missiles , 1980 .

[108]  L. Laine,et al.  3D FE-simulation of high-velocity fragment perforation of reinforced concrete slabs , 1999 .

[109]  Qingming Li,et al.  Perforation Thickness and Ballistic Limit of Concrete Target Subjected to Rigid Projectile Impact , 2003 .