Cratonic crust iluminated by global gravity gradient inversion

[1]  Yongjun Lu,et al.  Giant impacts and the origin and evolution of continents , 2022, Nature.

[2]  C. Kreemer,et al.  New maps of global geological provinces and tectonic plates , 2022, Earth-Science Reviews.

[3]  P. Haas,et al.  Crustal structure of the Volgo-Uralian subcraton revealed by inverse and forward gravity modeling , 2021, Solid Earth.

[4]  R. Müller,et al.  A tectonic-rules based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate-mantle system evolution , 2022, Solid Earth.

[5]  P. Haas,et al.  Two-step Gravity Inversion Reveals Variable Architecture of African Cratons , 2021, Frontiers in Earth Science.

[6]  J. Parnell,et al.  Increased biomass and carbon burial 2 billion years ago triggered mountain building , 2021, Communications Earth & Environment.

[7]  A. Malehmir,et al.  Long-lived Paleoproterozoic eclogitic lower crust , 2021, Nature Communications.

[8]  J. Paul,et al.  Supplemental Material: Could the Réunion plume have thinned the Indian craton? , 2021, Geology.

[9]  E. Dantas,et al.  Evidence of a Palaeoproterozoic SLIP, northern Amazonian Craton, Brazil , 2021 .

[10]  J. Hopper,et al.  Greenland Geothermal Heat Flow Database and Map (Version 1) , 2021, Earth System Science Data.

[11]  S. Lebedev,et al.  The tilted Iceland Plume and its effect on the North Atlantic evolution and magmatism , 2021 .

[12]  P. Kelemen,et al.  Deep continental roots and cratons , 2021, Nature.

[13]  J. Korenaga Hadean geodynamics and the nature of early continental crust , 2021, Precambrian Research.

[14]  J. Ebbing,et al.  Predicting Geothermal Heat Flow in Antarctica With a Machine Learning Approach , 2021, Journal of Geophysical Research: Solid Earth.

[15]  B. Steinberger,et al.  The supercontinent cycle , 2021, Nature Reviews Earth & Environment.

[16]  Z. Martinec,et al.  WINTERC-G: mapping the upper mantle thermochemical heterogeneity from coupled geophysical–petrological inversion of seismic waveforms, heat flow, surface elevation and gravity satellite data , 2021, Geophysical Journal International.

[17]  W. McDonough,et al.  A Geochemical Review of Amphibolite, Granulite, and Eclogite Facies Lithologies: Perspectives on the Deep Continental Crust , 2021, Journal of Geophysical Research: Solid Earth.

[18]  H. Bedle,et al.  Nature Versus Nurture: Preservation and Destruction of Archean Cratons , 2021 .

[19]  R. Müller,et al.  Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic , 2020, Earth-Science Reviews.

[20]  R. Müller,et al.  A Global Data Set of Present‐Day Oceanic Crustal Age and Seafloor Spreading Parameters , 2020, Geochemistry, Geophysics, Geosystems.

[21]  V. Sacek,et al.  Thermal Correction for Moho Depth Estimations on West Philippine Basin: A Python Code to Calculate the Gravitational Effects of Lithospheric Cooling Under Oceanic Crust , 2020, Pure and Applied Geophysics.

[22]  P. Haas,et al.  Sensitivity analysis of gravity gradient inversion of the Moho depth—a case example for the Amazonian Craton , 2020 .

[23]  S. Lebedev,et al.  The upper mantle beneath the South Atlantic Ocean, South America and Africa from waveform tomography with massive data sets , 2020, Geophysical Journal International.

[24]  A. Reading,et al.  A Multivariate Approach for Mapping Lithospheric Domain Boundaries in East Antarctica , 2019, Geophysical Research Letters.

[25]  Juan Carlos Afonso,et al.  A global reference model of the lithosphere and upper mantle from joint inversion and analysis of multiple data sets , 2019, Geophysical Journal International.

[26]  K. Czarnota,et al.  Global distribution of sediment-hosted metals controlled by craton edge stability , 2019, Nature Geoscience.

[27]  S. Thiel,et al.  Mapping the Gawler Craton–Musgrave Province interface using integrated heat flow and magnetotellurics , 2019, Tectonophysics.

[28]  F. Ferraccioli,et al.  Moho Depths of Antarctica: Comparison of Seismic, Gravity, and Isostatic Results , 2019, Geochemistry, Geophysics, Geosystems.

[29]  J. Afonso,et al.  Global Crustal Thickness and Velocity Structure From Geostatistical Analysis of Seismic Data , 2019, Journal of Geophysical Research: Solid Earth.

[30]  S. Lebedev,et al.  Widespread volcanism in the Greenland–North Atlantic region explained by the Iceland plume , 2018, Nature Geoscience.

[31]  Johannes Bouman,et al.  Earth tectonics as seen by GOCE - Enhanced satellite gravity gradient imaging , 2018, Scientific Reports.

[32]  R. Carlson,et al.  Petrogenesis and tectonics of the Acasta Gneiss Complex derived from integrated petrology and 142Nd and 182W extinct nuclide-geochemistry , 2018, Earth and Planetary Science Letters.

[33]  S. Lebedev,et al.  African cratonic lithosphere carved by mantle plumes , 2018, Nature Communications.

[34]  B. Steinberger,et al.  The Importance of Upper Mantle Heterogeneity in Generating the Indian Ocean Geoid Low , 2017 .

[35]  B. Lund,et al.  High-resolution Moho model for Greenland from EIGEN-6C4 gravity data , 2017 .

[36]  D. Snyder,et al.  Construction and destruction of some North American cratons , 2017 .

[37]  R. Trindade,et al.  Paleogeography of the Congo/São Francisco craton at 1.5 Ga: Expanding the core of Nuna supercontinent , 2016 .

[38]  Fu-Yuan Wu,et al.  Age of the Siberian craton crust beneath the northern kimberlite fields: Insights to the craton evolution , 2016 .

[39]  Aibing Li,et al.  Destruction of the Wyoming craton: Seismic evidence and geodynamic processes , 2016 .

[40]  J. Ebbing,et al.  Importance of far-field topographic and isostatic corrections for regional density modelling , 2016 .

[41]  M. Jessell,et al.  Lower crust exhumation during Paleoproterozoic (Eburnean) orogeny, NW Ghana, West African Craton: interplay of coeval contractional deformation and extensional gravitational collapse , 2016 .

[42]  M. Fuchs,et al.  Satellite gravity gradient grids for geophysics , 2016, Scientific Reports.

[43]  Huaiyu Yuan Secular change in Archaean crust formation recorded in Western Australia , 2015 .

[44]  Timothy M. Kusky,et al.  Has the Yangtze craton lost its root? A comparison between the North China and Yangtze cratons , 2015 .

[45]  A. Nyblade,et al.  Crustal structure of Precambrian terranes in the southern African subcontinent with implications for secular variation in crustal genesis , 2015 .

[46]  P. Kelemen,et al.  Continental Lower Crust , 2015 .

[47]  Mirko Reguzzoni,et al.  EMMA : An Earth crustal model based on GOCE satellite data , 2014 .

[48]  B. Knapmeyer‐Endrun,et al.  Moho depth across the Trans-European Suture Zone from P- and S-receiver functions , 2014 .

[49]  D. Blankenship,et al.  The subglacial geology of Wilkes Land, East Antarctica , 2014 .

[50]  N. Simon,et al.  Inhibited eclogitization and consequences for geophysical rock properties and delamination models: Constraints from cratonic lower crustal xenoliths , 2014 .

[51]  Mark van der Meijde,et al.  Precambrian crustal structure in Africa and Arabia: Evidence lacking for secular variation , 2013 .

[52]  W. Rabbel,et al.  Contrasts of seismic velocity, density and strength across the Moho , 2013 .

[53]  W. Mooney,et al.  The character of the Moho and lower crust within Archean cratons and the tectonic implications , 2013 .

[54]  M. van der Meijde,et al.  Gravity derived Moho for South America , 2013 .

[55]  W. Griffin,et al.  Moho vs crust-mantle boundary: Evolution of an idea , 2013 .

[56]  M. Santosh,et al.  Seismic Evidence for a Geosuture between the Yangtze and Cathaysia Blocks, South China , 2013, Scientific Reports.

[57]  S. Lebedev,et al.  Global shear speed structure of the upper mantle and transition zone , 2013 .

[58]  H. Thybo,et al.  Crustal structure of the Siberian craton and the West Siberian basin: An appraisal of existing seismic data , 2013 .

[59]  Gabi Laske,et al.  LITHO1.0: An Updated Crust and Lithosphere Model of the Earth (Postprint) , 2012 .

[60]  B. Kennett,et al.  Seismic structure of the crust and uppermost mantle of the Capricorn and Paterson Orogens and adjacent cratons, Western Australia, from passive seismic transects , 2012 .

[61]  B. Romanowicz,et al.  Tectonic regionalization without a priori information: A cluster analysis of upper mantle tomography , 2011 .

[62]  S. Boger Antarctica — Before and after Gondwana , 2011 .

[63]  B. Steinberger,et al.  Diamonds sampled by plumes from the core–mantle boundary , 2010, Nature.

[64]  Eric Darve,et al.  The black-box fast multipole method , 2009, J. Comput. Phys..

[65]  M. Gurnis,et al.  Instantaneous dynamics of the cratonic Congo basin , 2009 .

[66]  I. Artemieva The continental lithosphere: Reconciling thermal, seismic, and petrologic data , 2009 .

[67]  A. Pêcher,et al.  Superimposed Neoarchaean and Paleoproterozoic tectonics in the Terre Adélie Craton (East Antarctica): Evidence from Th–U–Pb ages on monazite and 40Ar/39Ar ages , 2008 .

[68]  Peter A. Cawood,et al.  Assembling Australia: Proterozoic building of a continent , 2008 .

[69]  M. Kuusisto,et al.  Delamination of eclogitized lower crust: Control on the crust–mantle boundary in the central Fennoscandian shield , 2008 .

[70]  M. P. Rocha,et al.  Deep crustal structure of the Paraná Basin from receiver functions and Rayleigh-wave dispersion: Evidence for a fragmented cratonic root , 2008 .

[71]  N. Kusznir,et al.  Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction , 2008 .

[72]  K. Karlstrom,et al.  Assembly, configuration, and break-up history of Rodinia: A synthesis , 2008 .

[73]  B. Bingen,et al.  The East European Craton (Baltica) before and during the assembly of Rodinia , 2008 .

[74]  B. Kennett,et al.  Improved inversion for seismic structure using transformed, S‐wavevector receiver functions: Removing the effect of the free surface , 2003 .

[75]  Peter Schwintzer,et al.  Density of the continental roots: compositional and thermal contributions , 2003 .

[76]  M. Zoback,et al.  Lithospheric Buoyancy and Continental Intraplate Stresses , 2003 .

[77]  C. Teyssier,et al.  Gravitational collapse of the continental crust: definition, regimes and modes , 2001 .

[78]  Carrie Brindisi,et al.  Crustal model for the Middle East and North Africa region: implications for the isostatic compensation mechanism , 2001 .

[79]  I. Fitzsimons A review of tectonic events in the East Antarctic Shield and their implications for Gondwana and earlier supercontinents , 2000 .

[80]  P. Silver,et al.  Dynamic topography, plate driving forces and the African superswell , 1998, Nature.

[81]  Gabi Laske,et al.  CRUST 5.1: A global crustal model at 5° × 5° , 1998 .

[82]  Walter D. Mooney,et al.  Seismic velocity structure and composition of the continental crust: A global view , 1995 .

[83]  W. Mooney,et al.  Evolution of the Precambrian lithosphere: Seismological and geochemical constraints , 1994 .

[84]  D. McKenzie,et al.  Some remarks on the development of sedimentary basins , 1978 .

[85]  Valéria C. F. Barbosa,et al.  Fast nonlinear gravity inversion in spherical coordinates with application to the South American Moho , 2017 .

[86]  D. Blankenship,et al.  The Australo-Antarctic Columbia to Gondwana transition , 2016 .

[87]  S. Lebedev,et al.  Global Heterogeneity of the Lithosphere and Underlying Mantle: A Seismological Appraisal Based on Multimode Surface-Wave Dispersion Analysis, Shear-Velocity Tomography, and Tectonic Regionalization , 2015 .

[88]  T. Tiira,et al.  The Moho depth map of the European Plate , 2009 .

[89]  W. Mooney Crust and Lithospheric Structure - Global Crustal Structure , 2007 .

[90]  P. Hoffman,et al.  United Plates of America, The Birth of a Craton: Early Proterozoic Assembly and Growth of Laurentia , 1988 .