Analyzing the global human appropriation of net primary production — processes, trajectories, implications. An introduction☆

Humanity's role in shaping patterns and processes in the terrestrial biosphere is large and growing. Most of the earth's fertile land is used more or less intensively by humans for resource extraction, production, transport, consumption and waste deposition or as living space. Biomass production on cropland, grazing areas and in managed forests dominates area requirements, but other processes such as soil degradation, human-induced fires and expansion of settlements and infrastructure play an increasingly important role as well. The growing human domination of terrestrial ecosystems contributes to biodiversity loss as well as to a reduced capability of ecosystems to deliver vital services such as buffering capacity, soil conservation or self-regulation. This special section is devoted to the presentation of recent research into the patterns, determinants and implications of the human appropriation of net primary production (HANPP), an integrated socio-ecological indicator of land use intensity. By measuring the combined effect of land conversion and biomass harvest on the availability of trophic energy (biomass) in ecosystems, HANPP explicitly links natural with socioeconomic processes and allows for integrated analyses of land systems. This introductory article explains the rationale that links current HANPP research to Ecological Economics and discusses issues of definition and methods shared by all articles included in the special section. Finally, it gives an overview of the individual papers, provides some general conclusions and presents an outlook for future research: a better understanding of long-term trajectories of HANPP, of the significance of trade patterns as well as of the future role of bioenergy are highlighted as important issues to be addressed in the coming years.

[1]  R. Robinson Rings of flowers , 1986 .

[2]  N. Ramankutty,et al.  Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000 , 2008 .

[3]  J. Goldemberg World energy assessment : energy and the challenge of sustainability , 2000 .

[4]  R. Lal Soil carbon sequestration to mitigate climate change , 2004 .

[5]  Marina Fischer-Kowalski,et al.  Gesellschaftlicher Stoffwechsel und Kolonisierung von Natur : ein Versuch in Sozialer Ökologie , 1997 .

[6]  W. C. Clark,et al.  Anthropogenic Modification of Land, Coastal, and Atmospheric Systems as Threats to the Functioning of the Earth System , 2004 .

[7]  C. Davidson Economic Growth and the Environment:Alternatives to the Limits Paradigm , 2000 .

[8]  D. Wright,et al.  Human impacts on energy flow through natural ecosystems, and implications for species endangerment. , 1990 .

[9]  R. Norby,et al.  Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi‐factor world , 2004 .

[10]  Raymond L. Lindeman The trophic-dynamic aspect of ecology , 1942 .

[11]  Helmut Haberl,et al.  Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints , 2008 .

[12]  Norbert Sauberer,et al.  Human appropriation of net primary production and species diversity in agricultural landscapes , 2003 .

[13]  S. Polasky,et al.  Land Clearing and the Biofuel Carbon Debt , 2008, Science.

[14]  William J. McConnell,et al.  Global Land Project , 2005 .

[15]  David H. Wright,et al.  Species-energy theory: an extension of species-area theory , 1983 .

[16]  John F. Richards,et al.  The Cambridge Encyclopedia of Human Evolution.@@@The Earth as Transformed by Human Action: Global and Regional Changes in the Biosphere Over the Past 300 Years. , 1993 .

[17]  A. Bondeau,et al.  Comparing global models of terrestrial net primary productivity (NPP): overview and key results , 1999 .

[18]  Helmut Haberl,et al.  The global loss of net primary production resulting from human-induced soil degradation in drylands , 2008 .

[19]  Paul J. Crutzen,et al.  Earth System Analysis for Sustainability , 2005 .

[20]  Marc L. Imhoff,et al.  Global patterns in human consumption of net primary production , 2004, Nature.

[21]  J. Townshend,et al.  Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm , 2003 .

[22]  M. Willig,et al.  The Relationship Between Productivity and Species Richness , 1999 .

[23]  Fridolin Krausmann,et al.  Land use and industrial modernization: an empirical analysis of human influence on the functioning of ecosystems in Austria 1830–1995 , 2001 .

[24]  S. Zaehle,et al.  Contemporary “green” water flows: Simulations with a dynamic global vegetation and water balance model , 2005 .

[25]  H. Mooney,et al.  Human Domination of Earth’s Ecosystems , 1997, Renewable Energy.

[26]  D. Schimel,et al.  Terrestrial ecosystems and the carbon cycle , 1995 .

[27]  Lisa J. Graumlich,et al.  Global Land-Cover Change: Recent Progress, Remaining Challenges , 2006 .

[28]  P. Stern,et al.  People and pixels : linking remote sensing and social science , 1999 .

[29]  H. Haberl,et al.  Indicators of sustainable land use: concepts for the analysis of society‐nature interrelations and implications for sustainable development , 1999 .

[30]  M. Harmon,et al.  Ecology of Coarse Woody Debris in Temperate Ecosystems , 1986 .

[31]  A. Bouwman,et al.  Mapping contemporary global cropland and grassland distributions on a 5 × 5 minute resolution , 2007 .

[32]  W. Steffen,et al.  Science Plan and Implementation Strategy , 2006 .

[33]  R. Ayres On the practical limits to substitution , 2007 .

[34]  Robin P. White,et al.  Pilot analysis of global ecosystems: grassland ecosystems. , 2000 .

[35]  Tamara Boland,et al.  Grassland Resource Assessment for Pastoral Systems , 2002 .

[36]  S. Prince,et al.  Determining Present Patterns of Global Productivity , 2001 .

[37]  Helmut Haberl,et al.  Human appropriation of net primary production as determinant of avifauna diversity in Austria , 2005 .

[38]  Robert U. Ayres,et al.  Industrial Metabolism: Restructuring for Sustainable Development , 1994 .

[39]  C. Field,et al.  A Primer on the Terrestrial Carbon Cycle: What We Don't Know, But Should , 2004 .

[40]  H. Haberl,et al.  What determines geographical patterns of the global human appropriation of net primary production? , 2009 .

[41]  H. Weisz,et al.  The Weight of Nations : Material Outflows from Industrial Economies , 2000 .

[42]  P. Crutzen,et al.  The Anthropocene: Are Humans Now Overwhelming the Great Forces of Nature , 2007, Ambio.

[43]  W. Steffen,et al.  Global Change and the Earth System: A Planet Under Pressure , 2005 .

[44]  F. Krausmann,et al.  Land use change, biomass production and HANPP: The case of Hungary 1961-2005 , 2009 .

[45]  D. Wardle,et al.  Ecological Linkages Between Aboveground and Belowground Biota , 2004, Science.

[46]  T. D. Mitchell,et al.  An improved method of constructing a database of monthly climate observations and associated high‐resolution grids , 2005 .

[47]  Helmut Haberl,et al.  Changes in ecosystem processes induced by land use: Human appropriation of aboveground NPP and its influence on standing crop in Austria , 2001 .

[48]  Donald L. DeAngelis,et al.  The global carbon cycle. , 1990 .

[49]  E. Sanderson,et al.  The Human Footprint and the Last of the Wild , 2002 .

[50]  Eric F. Lambin,et al.  Land-use and land-cover change : local processes and global impacts , 2010 .

[51]  H. Mooney,et al.  23 – Estimations of Global Terrestrial Productivity: Converging toward a Single Number? , 2001 .

[52]  G. Daily,et al.  ECOSYSTEM SERVICES: Benefits Supplied to Human Societies by Natural Ecosystems , 2007 .

[53]  Christopher B. Field,et al.  Combining satellite data and biogeochemical models to estimate global effects of human‐induced land cover change on carbon emissions and primary productivity , 1999 .

[54]  C. Müller,et al.  Modelling the role of agriculture for the 20th century global terrestrial carbon balance , 2007 .

[55]  Harold A. Mooney,et al.  Terrestrial Global Productivity , 2001 .

[56]  Wolfgang Lucht,et al.  Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption , 2009 .

[57]  William J. McConnell,et al.  Global Land Project: Science Plan and ImplementationStrategy , 2005 .

[58]  J. Lamarque,et al.  Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation , 2006 .

[59]  Elmar Schwarzlmüller,et al.  Human Appropriation of Net Primary Production , 2008 .

[60]  Helmut Haberl,et al.  A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data , 2007 .

[61]  Paul J. Crutzen,et al.  How Long Have We Been in the Anthropocene Era? , 2003 .

[62]  Helmut Haberl,et al.  The process of industrialization from the perspective of energetic metabolism: Socioeconomic energy flows in Austria 1830-1995 , 2002 .

[63]  Wolfgang Lucht,et al.  Comparative impact of climatic and nonclimatic factors on global terrestrial carbon and water cycles , 2006 .

[64]  H. Haberl,et al.  Land-use Change and Socioeconomic Metabolism: A Macro View of Austria 1830–2000 , 2007 .

[65]  D. Meadows,et al.  The Limits to Growth , 2018, Green Planet Blues.

[66]  C. Field Sharing the Garden , 2001, Science.

[67]  A. Mather,et al.  Global Forest Resources Assessment 2000 Main Report: FAO Forestry Paper 140, FAO, Rome, 2001, xxvii+479pp, price $40.00, ISBN 92 5 104642-5, ISSN 0258-6150 , 2003 .

[68]  N. Ramankutty,et al.  Characterizing patterns of global land use: An analysis of global croplands data , 1998 .

[69]  Eric F. Lambin,et al.  Land-Use and Land-Cover Change , 2006 .

[70]  H. Haberl,et al.  Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems , 2007, Proceedings of the National Academy of Sciences.

[71]  Erle C. Ellis,et al.  Putting people in the map: anthropogenic biomes of the world , 2008 .

[72]  R. Kasperson,et al.  Sustainability Science , 2019, Critical Skills for Environmental Professionals.

[73]  Helmut Haberl,et al.  Land-use change and socio-economic metabolism in Austria—Part I: driving forces of land-use change: 1950–1995 , 2003 .

[74]  Elmar Schwarzlmüller Human appropriation of aboveground net primary production in Spain, 1955-2003: An empirical analysis of the industrialization of land use , 2009 .

[75]  R. Dunlap,et al.  Which Function(s) of the Environment Do We Study? A Comparison of Environmental and Natural Resource Sociology , 2002 .

[76]  Gert-Jan Nabuurs,et al.  The role of European forests in the global carbon cycle—A review , 1997 .

[77]  V. Heywood,et al.  Global Biodiversity Assessment , 1996 .

[78]  Christian Lauk,et al.  Biomass consumed in anthropogenic vegetation fires: global patterns and processes. , 2009 .

[79]  Jennifer A. Logan,et al.  An assessment of biofuel use and burning of agricultural waste in the developing world , 2003 .

[80]  J. Latorre,et al.  Dealing with aridity: socio-economic structures and environmental changes in an arid Mediterranean region , 2001 .

[81]  Helmut Haberl,et al.  Towards an integrated model of socioeconomic biodiversity drivers, pressures and impacts. A feasibility study based on three European long-term socio-ecological research platforms , 2009 .

[82]  E. Lambin,et al.  The emergence of land change science for global environmental change and sustainability , 2007, Proceedings of the National Academy of Sciences.

[83]  Will Steffen,et al.  Global Change and the Earth System , 2008 .

[84]  I. C. Prentice,et al.  Carbon balance of the terrestrial biosphere in the Twentieth Century: Analyses of CO2, climate and land use effects with four process‐based ecosystem models , 2001 .

[85]  S. Carpenter,et al.  Global Consequences of Land Use , 2005, Science.

[86]  Benjamin L Turner Land Change Science , 2004 .

[87]  R. DeFries,et al.  Global distribution of C3 and C4 vegetation: Carbon cycle implications , 2003 .

[88]  K. Gaston Global patterns in biodiversity , 2000, Nature.

[89]  Dagmar Schröter,et al.  Socioecological transitions and global change: trajectories of social metabolism and land use , 2009 .

[90]  M. Harmon,et al.  Effects on Carbon Storage of Conversion of Old-Growth Forests to Young Forests , 1990, Science.

[91]  Helmut Haberl,et al.  Land use and sustainability indicators. An introduction. , 2004 .

[92]  Dennis L. Meadows,et al.  Beyond the limits: Global collapse or a sustainable future , 1993 .

[93]  W. Reid,et al.  Millennium Ecosystem Assessment , 2005 .

[94]  Gene E. Likens,et al.  Primary production: The biosphere and man , 1973 .

[95]  Raymond L. Lindeman The trophic-dynamic aspect of ecology , 1942 .

[96]  Fridolin Krausmann,et al.  Milk, Manure, and Muscle Power. Livestock and the Transformation of Preindustrial Agriculture in Central Europe , 2004 .

[97]  S. Sterling,et al.  Human Appropriation of Photosynthesis Products , 2001, Science.

[98]  C. S. Holling Resilience and Stability of Ecological Systems , 1973 .

[99]  E. Hizsnyik,et al.  Biofuels and Food Security: Implications of an Accelerated Biofuels Production , 2009 .

[100]  R. Kates,et al.  Long-term trends and a sustainability transition , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[101]  S S I T C H,et al.  Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the Lpj Dynamic Global Vegetation Model , 2022 .

[102]  J. Alier La economía ecológica como ecología humana: = Ecological economics as human ecology = Die ökologische Ökonomie als Humanökologie , 1998 .

[103]  James J. Kay,et al.  An ecosystem approach for sustainability: addressing the challenge of complexity , 1999 .

[104]  C. Field,et al.  Biomass energy: the scale of the potential resource. , 2008, Trends in ecology & evolution.

[105]  Pamela A. Matson,et al.  HUMAN APPROPRIATION OF THE PRODUCTS OF PHOTOSYNTHESIS , 1986 .

[106]  B. Turner The Earth as Transformed by Human Action , 1988 .

[107]  D. Pimentel,et al.  How many people can the earth support , 1997 .

[108]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[109]  Corinne Le Quéré,et al.  Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks , 2007, Proceedings of the National Academy of Sciences.

[110]  Robert Costanza,et al.  An Introduction to Ecological Economics , 1997 .

[111]  Mark Sagoff,et al.  Carrying capacity and ecological economics , 1995 .

[112]  T. Kastner Trajectories in human domination of ecosystems: Human appropriation of net primary production in the Philippines during the 20th century☆ , 2009 .

[113]  Helmut Haberl,et al.  Human Appropriation of Net Primary Production , 2002, Science.

[114]  D. Abson,et al.  To settle or protect? A global analysis of net primary production in parks and urban areas , 2009 .

[115]  P. Jones,et al.  REPRESENTING TWENTIETH CENTURY SPACE-TIME CLIMATE VARIABILITY. , 1998 .