Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond
暂无分享,去创建一个
[1] Alexandre V. Borovik,et al. An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals , 2012, Notre Dame J. Formal Log..
[2] David Salinger. Plato's Ghost: The Modernist Transformation of Mathematics , 2010 .
[3] Lorenzo Magnani,et al. Mathematics through Diagrams: Microscopes in Non-Standard and Smooth Analysis , 2007, Model-Based Reasoning in Science, Technology, and Medicine.
[4] D. Jesseph. George Berkeley, The analyst (1734) , 2005 .
[5] German E. Berrios,et al. With an introduction by , 2014 .
[6] E. Bell. The development of mathematics , 1941 .
[7] David Tall,et al. Dynamic mathematics and the blending of knowledge structures in the calculus , 2009 .
[8] Paolo Mancosu,et al. MEASURING THE SIZE OF INFINITE COLLECTIONS OF NATURAL NUMBERS: WAS CANTOR’S THEORY OF INFINITE NUMBER INEVITABLE? , 2009, The Review of Symbolic Logic.
[9] Terence Tao,et al. Structure and randomness , 2008 .
[10] Henri Poincaré,et al. The Foundations of Science: Science and Hypothesis, The Value of Science, Science and Method , 2012 .
[11] D. Jesseph. Berkeley's Philosophy of Mathematics , 1993 .
[12] F. Cajori,et al. Mathematical Principles of Natural Philosophy and his System of the World , 1935 .
[13] Paul Stryckman. De la méthode , 1996 .
[14] Detlef Laugwitz. Infinitely small quantities in Cauchy's textbooks , 1987 .
[15] Henk J. M. Bos,et al. Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .
[16] Robert M. Anderson,et al. A non-standard representation for Brownian Motion and Itô integration , 1976 .
[17] Bruce Pourciau,et al. Newton and the Notion of Limit , 2001 .
[18] Gottfried Wilhelm Freiherr von Leibniz,et al. Historia et origo, calculi differentialis a G.G. Leibnitio conscripta : zur zweiten Säcularfeier des Leibnizischen geburtstages aus den Handschriften der Königlichen Bibliothek zu Hannover , 1846 .
[19] Giovanni Ferraro,et al. The rise and development of the theory of series up to the early 1820s , 2007 .
[20] C. Allen,et al. Stanford Encyclopedia of Philosophy , 2011 .
[21] Mikhail G. Katz,et al. A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.
[22] David Eugene Smith,et al. A source book in mathematics , 1930 .
[23] A. Cauchy. Cours d'analyse de l'École royale polytechnique , 1821 .
[24] F. B.,et al. The Concepts of the Calculus , 1939, Nature.
[25] Paolo Mancosu,et al. The Philosophy of Mathematical Practice , 2008 .
[26] R. H.,et al. The Principles of Mathematics , 1903, Nature.
[27] Hide Ishiguro,et al. Leibniz's Philosophy of Logic and Language , 1972 .
[28] Abraham Robinson. Selected papers of Abraham Robinson , 1978 .
[29] The Metaphysics of the Calculus , 1967 .
[30] Kirsti Andersen. One of Berkeleys arguments on compensating errors in the calculus , 2011 .
[31] D. S. L. Cardwell,et al. Lazare Carnot, Savant , 1971 .
[32] G. Leibniz,et al. Quadrature arithmétique du cercle, de l'ellipse et de l'hyperbole et la trigonométrie sans tables trigonométriques qui en est le corollaire , 2004 .
[33] Mikhail G. Katz,et al. Cauchy's Continuum , 2011, Perspectives on Science.
[34] Richard T. W. Arthur. Leibniz’s syncategorematic infinitesimals , 2013 .
[35] J. Earman. Infinities, infinitesimals, and indivisibles: the leibnizian labyrinth , 1975 .
[36] B. L. Waerden,et al. A history of algebra : from Al-Khwārizmī to Emmy Noether , 1985 .
[37] M. Kline. Mathematical Thought from Ancient to Modern Times , 1972 .
[38] P. Wallis,et al. A Source Book in Mathematics, 1200-1800 , 1971, The Mathematical Gazette.
[39] Leif Arkeryd. Nonstandard Analysis , 2005, Am. Math. Mon..
[40] R. Ely. Nonstandard Student Conceptions About Infinitesimals , 2010 .
[41] Tony Rothman,et al. Genius and Biographers: The Fictionalization of Evariste Galois , 1982 .
[42] Edward Nelson. Internal set theory: A new approach to nonstandard analysis , 1977 .
[43] Mikhail G. Katz,et al. Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.
[44] E. Perkins. NONSTANDARD METHODS IN STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS , 1988 .
[45] Abraham Adolf Fraenkel. Einleitung in die Mengenlehre , 1919 .
[46] R. McClenon. Sherlock Holmes in Babylon: A Contribution of Leibniz to the History of Complex Numbers , 1923 .
[47] M. Dascal. The practice of reason : Leibniz and his controversies , 2010 .
[48] Douglas M. Jesseph,et al. Leibniz on The Elimination of Infinitesimals , 2015 .
[49] E. Seneta. Cauchy, Augustin–Louis , 2006 .
[50] David Sherry,et al. The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .
[51] Mikhail G. Katz,et al. Zooming in on infinitesimal 1–.9.. in a post-triumvirate era , 2010, 1003.1501.
[52] Akademie der Wissenschaften in Göttingen,et al. Sämtliche Schriften und Briefe , 1923 .
[53] H. Keisler. Foundations of infinitesimal calculus , 1976 .
[54] A. Robinson. Numbers and Models , Standard and Nonstandard , 2010 .
[55] Philip Ehrlich,et al. The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small , 2012, The Bulletin of Symbolic Logic.
[56] Ekkehard Kopp,et al. On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.
[57] Nicolas Bourbaki,et al. Éléments d'histoire des mathématiques , 1971 .
[58] J. O. Wisdom. BERKELEY'S CRITICISM OF THE INFINITESIMAL , 1953, The British Journal for the Philosophy of Science.
[59] J. M. Child. The Early Mathematical Manuscripts Of Leibniz , 1921, The Mathematical Gazette.
[60] G. Leibniz,et al. The Early Mathematical Manuscripts of Leibniz: Translated from the Latin Texts Published by Carl Immanuel Gerhardt with Critical and Historical Notes , 2012 .
[61] David Tall,et al. Advanced Mathematical Thinking , 1994 .
[62] Leonhard Euler,et al. Elements of algebra , 1818 .
[63] Augustin-Louis Cauchy. Oeuvres complètes: ANALYSE MATHÉMATIQUE. — Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données , 2009 .
[64] D. Laugwitz. Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .
[65] John P. Burgess,et al. Why I am not a nominalist , 1983, Notre Dame J. Formal Log..
[66] Christoph J. Scriba,et al. B. L. van der Waerden: A History of Algebra. From al‐Khwarizmi to Emmy Noether. Berlin/Heidelberg/New York/Tokyo: Springer‐Verlag 1985. xi, 271 Seiten, 28 Figuren. Leinen, DM 98,‐. , 1987 .
[67] Gottfried Wilhelm Leibniz. The labyrinth of the continuum , 2001 .
[68] A. Tarski,et al. Une contribution à la théorie de la mesure , 1930 .
[69] K. D. Stroyan. Uniform Continuity and Rates of Growth of Meromorphic Functions1) , 1972 .
[70] Abraham Adolf Fraenkel,et al. Abstract set theory , 1953 .
[71] Ivor Grattan-Guinness,et al. The mathematics of the past: distinguishing its history from our heritage , 2004 .
[72] J. Bell. A primer of infinitesimal analysis , 1998 .
[73] D. Tall,et al. THE TENSION BETWEEN INTUITIVE INFINITESIMALS AND FORMAL MATHEMATICAL ANALYSIS , 2011, 1110.5747.
[74] E. W. Strong. Newton's Mathematical Way , 1951 .
[75] P. Zsombor-Murray,et al. Elementary Mathematics from an Advanced Standpoint , 1940, Nature.
[76] D. Fowler. Dedekind's Theorem: , 1992 .
[77] D. Morgan. L. On the early history of infinitesimals in England , 1852 .
[78] Paolo Mancosu. Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century , 1996 .
[79] Mikhail G. Katz,et al. From discrete arithmetic to arithmetic of the continuum , 2013 .
[80] H. Halberstam,et al. THE HISTORICAL DEVELOPMENT OF THE CALCULUS , 1981 .
[81] Abraham Robinson,et al. Nonstandard analysis and philosophy , 1979 .
[82] Charles Coulston Gillispie,et al. Dictionary of scientific biography , 1970 .
[83] C. Guiterrez. Plato's Ghost , 2009 .
[84] Alexandre Borovik,et al. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.
[85] Judith V. Grabiner,et al. The origins of Cauchy's rigorous calculus , 1981 .
[86] D. Laugwitz. Early delta functions and the use of infinitesimals in research , 1992 .
[87] Louis Narens,et al. Utility-uncertainty trade-off structures☆ , 1976 .
[88] Eberhard Knobloch,et al. Leibniz's Rigorous Foundation Of Infinitesimal Geometry By Means Of Riemannian Sums , 2002, Synthese.
[89] Stephen W. Hawking,et al. God Created the Integers: The Mathematical Breakthroughs That Changed History , 2005 .
[90] I. Newton,et al. The Principia : Mathematical Principles of Natural Philosophy , 2018 .
[91] Philip Ehrlich,et al. The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .
[92] Gert Schubring,et al. Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany , 2005 .
[93] P. Mancosu,et al. Detleff Clüver: An Early Opponent of the Leibnizian Differential Calculus , 1990 .
[94] Carl B. Boyer,et al. The Concepts of the Calculus , 1940 .
[95] F. William Lawvere,et al. Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body , 1980 .
[96] E. Zermelo. Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .
[97] Edwin Hewitt,et al. Rings of real-valued continuous functions. I , 1948 .
[98] M. Katz,et al. Two ways of obtaining infinitesimals by refining Cantor's completion of the reals , 2011, 1109.3553.
[99] D. Laugwitz,et al. Eine Erweiterung der Infinitesimalrechnung , 1958 .
[100] René Taton,et al. The Principal Works of Simon Stevin , 1959 .
[101] Carl B. Boyer,et al. The history of the calculus and its conceptual development. : (The concepts of the calculus) , 1939 .
[102] H. Keisler. Elementary Calculus: An Infinitesimal Approach , 1976 .
[103] J. Pier. Development of mathematics , 1994 .
[104] Implicit Differentiation with Microscopes , 2010 .
[105] G. Carchedi. Dialectics and Temporality in Marx's Mathematical Manuscripts , 2008 .
[106] Desmond Fearnley-Sander,et al. Hermann Grassmann and the Creation of Linear Algebra , 1979 .
[107] Kajsa Bråting,et al. A new look at E.G. Björling and the Cauchy sum theorem , 2007 .
[108] Jerzy Loś,et al. Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .
[109] W. Luxemburg. Non-Standard Analysis , 1977 .
[110] Karin U. Katz,et al. When is .999... less than 1? , 2010, The Mathematics Enthusiast.
[111] T. Skolem. Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen , 1934 .
[112] Lorenzo Magnani,et al. Perceiving the Infinite and the Infinitesimal World: Unveiling and Optical Diagrams in Mathematics , 2005 .
[113] Leif Arkeryd,et al. Intermolecular forces of infinite range and the Boltzmann equation , 1981 .
[114] D. Jesseph,et al. Archimedes, Infinitesimals and the Law of Continuity: On Leibniz’s Fictionalism , 2008 .
[115] Instructor’s Manual , 2003 .
[116] A. Robinson. From a formalist's point of view , 1969 .
[117] D. J. Winter. A History of Algebra. , 1988 .
[118] The correctness of Euler's method for the factorization of the sine function into an infinite product , 1988 .
[119] Mikhail G. Katz,et al. Leibniz's laws of continuity and homogeneity , 2012, 1211.7188.
[120] Heinrich Rust. Operational Semantics for Timed Systems: A Non-standard Approach to Uniform Modeling of Timed and Hybrid Systems , 2005, Lecture Notes in Computer Science.
[121] D. Tall. Looking at graphs through infinitesimal microscopes, windows and telescopes , 1980, The Mathematical Gazette.
[122] Larry M. Jorgensen. The Principle of Continuity and Leibniz's Theory of Consciousness , 2009 .
[123] Mikhail G. Katz,et al. Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.
[124] Alasdair Urquhart. Mathematics and Physics: Strategies of Assimilation , 2008 .