Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond

Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, Robinson regards Berkeley’s criticisms of the infinitesimal calculus as aptly demonstrating the inconsistency of reasoning with historical infinitesimal magnitudes. We argue that Robinson, among others, overestimates the force of Berkeley’s criticisms, by underestimating the mathematical and philosophical resources available to Leibniz. Leibniz’s infinitesimals are fictions, not logical fictions, as Ishiguro proposed, but rather pure fictions, like imaginaries, which are not eliminable by some syncategorematic paraphrase. We argue that Leibniz’s defense of infinitesimals is more firmly grounded than Berkeley’s criticism thereof. We show, moreover, that Leibniz’s system for differential calculus was free of logical fallacies. Our argument strengthens the conception of modern infinitesimals as a development of Leibniz’s strategy of relating inassignable to assignable quantities by means of his transcendental law of homogeneity.

[1]  Alexandre V. Borovik,et al.  An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals , 2012, Notre Dame J. Formal Log..

[2]  David Salinger Plato's Ghost: The Modernist Transformation of Mathematics , 2010 .

[3]  Lorenzo Magnani,et al.  Mathematics through Diagrams: Microscopes in Non-Standard and Smooth Analysis , 2007, Model-Based Reasoning in Science, Technology, and Medicine.

[4]  D. Jesseph George Berkeley, The analyst (1734) , 2005 .

[5]  German E. Berrios,et al.  With an introduction by , 2014 .

[6]  E. Bell The development of mathematics , 1941 .

[7]  David Tall,et al.  Dynamic mathematics and the blending of knowledge structures in the calculus , 2009 .

[8]  Paolo Mancosu,et al.  MEASURING THE SIZE OF INFINITE COLLECTIONS OF NATURAL NUMBERS: WAS CANTOR’S THEORY OF INFINITE NUMBER INEVITABLE? , 2009, The Review of Symbolic Logic.

[9]  Terence Tao Structure and randomness , 2008 .

[10]  Henri Poincaré,et al.  The Foundations of Science: Science and Hypothesis, The Value of Science, Science and Method , 2012 .

[11]  D. Jesseph Berkeley's Philosophy of Mathematics , 1993 .

[12]  F. Cajori,et al.  Mathematical Principles of Natural Philosophy and his System of the World , 1935 .

[13]  Paul Stryckman De la méthode , 1996 .

[14]  Detlef Laugwitz Infinitely small quantities in Cauchy's textbooks , 1987 .

[15]  Henk J. M. Bos,et al.  Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .

[16]  Robert M. Anderson,et al.  A non-standard representation for Brownian Motion and Itô integration , 1976 .

[17]  Bruce Pourciau,et al.  Newton and the Notion of Limit , 2001 .

[18]  Gottfried Wilhelm Freiherr von Leibniz,et al.  Historia et origo, calculi differentialis a G.G. Leibnitio conscripta : zur zweiten Säcularfeier des Leibnizischen geburtstages aus den Handschriften der Königlichen Bibliothek zu Hannover , 1846 .

[19]  Giovanni Ferraro,et al.  The rise and development of the theory of series up to the early 1820s , 2007 .

[20]  C. Allen,et al.  Stanford Encyclopedia of Philosophy , 2011 .

[21]  Mikhail G. Katz,et al.  A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.

[22]  David Eugene Smith,et al.  A source book in mathematics , 1930 .

[23]  A. Cauchy Cours d'analyse de l'École royale polytechnique , 1821 .

[24]  F. B.,et al.  The Concepts of the Calculus , 1939, Nature.

[25]  Paolo Mancosu,et al.  The Philosophy of Mathematical Practice , 2008 .

[26]  R. H.,et al.  The Principles of Mathematics , 1903, Nature.

[27]  Hide Ishiguro,et al.  Leibniz's Philosophy of Logic and Language , 1972 .

[28]  Abraham Robinson Selected papers of Abraham Robinson , 1978 .

[29]  The Metaphysics of the Calculus , 1967 .

[30]  Kirsti Andersen One of Berkeleys arguments on compensating errors in the calculus , 2011 .

[31]  D. S. L. Cardwell,et al.  Lazare Carnot, Savant , 1971 .

[32]  G. Leibniz,et al.  Quadrature arithmétique du cercle, de l'ellipse et de l'hyperbole et la trigonométrie sans tables trigonométriques qui en est le corollaire , 2004 .

[33]  Mikhail G. Katz,et al.  Cauchy's Continuum , 2011, Perspectives on Science.

[34]  Richard T. W. Arthur Leibniz’s syncategorematic infinitesimals , 2013 .

[35]  J. Earman Infinities, infinitesimals, and indivisibles: the leibnizian labyrinth , 1975 .

[36]  B. L. Waerden,et al.  A history of algebra : from Al-Khwārizmī to Emmy Noether , 1985 .

[37]  M. Kline Mathematical Thought from Ancient to Modern Times , 1972 .

[38]  P. Wallis,et al.  A Source Book in Mathematics, 1200-1800 , 1971, The Mathematical Gazette.

[39]  Leif Arkeryd Nonstandard Analysis , 2005, Am. Math. Mon..

[40]  R. Ely Nonstandard Student Conceptions About Infinitesimals , 2010 .

[41]  Tony Rothman,et al.  Genius and Biographers: The Fictionalization of Evariste Galois , 1982 .

[42]  Edward Nelson Internal set theory: A new approach to nonstandard analysis , 1977 .

[43]  Mikhail G. Katz,et al.  Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.

[44]  E. Perkins NONSTANDARD METHODS IN STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS , 1988 .

[45]  Abraham Adolf Fraenkel Einleitung in die Mengenlehre , 1919 .

[46]  R. McClenon Sherlock Holmes in Babylon: A Contribution of Leibniz to the History of Complex Numbers , 1923 .

[47]  M. Dascal The practice of reason : Leibniz and his controversies , 2010 .

[48]  Douglas M. Jesseph,et al.  Leibniz on The Elimination of Infinitesimals , 2015 .

[49]  E. Seneta Cauchy, Augustin–Louis , 2006 .

[50]  David Sherry,et al.  The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .

[51]  Mikhail G. Katz,et al.  Zooming in on infinitesimal 1–.9.. in a post-triumvirate era , 2010, 1003.1501.

[52]  Akademie der Wissenschaften in Göttingen,et al.  Sämtliche Schriften und Briefe , 1923 .

[53]  H. Keisler Foundations of infinitesimal calculus , 1976 .

[54]  A. Robinson Numbers and Models , Standard and Nonstandard , 2010 .

[55]  Philip Ehrlich,et al.  The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small , 2012, The Bulletin of Symbolic Logic.

[56]  Ekkehard Kopp,et al.  On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.

[57]  Nicolas Bourbaki,et al.  Éléments d'histoire des mathématiques , 1971 .

[58]  J. O. Wisdom BERKELEY'S CRITICISM OF THE INFINITESIMAL , 1953, The British Journal for the Philosophy of Science.

[59]  J. M. Child The Early Mathematical Manuscripts Of Leibniz , 1921, The Mathematical Gazette.

[60]  G. Leibniz,et al.  The Early Mathematical Manuscripts of Leibniz: Translated from the Latin Texts Published by Carl Immanuel Gerhardt with Critical and Historical Notes , 2012 .

[61]  David Tall,et al.  Advanced Mathematical Thinking , 1994 .

[62]  Leonhard Euler,et al.  Elements of algebra , 1818 .

[63]  Augustin-Louis Cauchy Oeuvres complètes: ANALYSE MATHÉMATIQUE. — Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données , 2009 .

[64]  D. Laugwitz Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .

[65]  John P. Burgess,et al.  Why I am not a nominalist , 1983, Notre Dame J. Formal Log..

[66]  Christoph J. Scriba,et al.  B. L. van der Waerden: A History of Algebra. From al‐Khwarizmi to Emmy Noether. Berlin/Heidelberg/New York/Tokyo: Springer‐Verlag 1985. xi, 271 Seiten, 28 Figuren. Leinen, DM 98,‐. , 1987 .

[67]  Gottfried Wilhelm Leibniz The labyrinth of the continuum , 2001 .

[68]  A. Tarski,et al.  Une contribution à la théorie de la mesure , 1930 .

[69]  K. D. Stroyan Uniform Continuity and Rates of Growth of Meromorphic Functions1) , 1972 .

[70]  Abraham Adolf Fraenkel,et al.  Abstract set theory , 1953 .

[71]  Ivor Grattan-Guinness,et al.  The mathematics of the past: distinguishing its history from our heritage , 2004 .

[72]  J. Bell A primer of infinitesimal analysis , 1998 .

[73]  D. Tall,et al.  THE TENSION BETWEEN INTUITIVE INFINITESIMALS AND FORMAL MATHEMATICAL ANALYSIS , 2011, 1110.5747.

[74]  E. W. Strong Newton's Mathematical Way , 1951 .

[75]  P. Zsombor-Murray,et al.  Elementary Mathematics from an Advanced Standpoint , 1940, Nature.

[76]  D. Fowler Dedekind's Theorem: , 1992 .

[77]  D. Morgan L. On the early history of infinitesimals in England , 1852 .

[78]  Paolo Mancosu Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century , 1996 .

[79]  Mikhail G. Katz,et al.  From discrete arithmetic to arithmetic of the continuum , 2013 .

[80]  H. Halberstam,et al.  THE HISTORICAL DEVELOPMENT OF THE CALCULUS , 1981 .

[81]  Abraham Robinson,et al.  Nonstandard analysis and philosophy , 1979 .

[82]  Charles Coulston Gillispie,et al.  Dictionary of scientific biography , 1970 .

[83]  C. Guiterrez Plato's Ghost , 2009 .

[84]  Alexandre Borovik,et al.  Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.

[85]  Judith V. Grabiner,et al.  The origins of Cauchy's rigorous calculus , 1981 .

[86]  D. Laugwitz Early delta functions and the use of infinitesimals in research , 1992 .

[87]  Louis Narens,et al.  Utility-uncertainty trade-off structures☆ , 1976 .

[88]  Eberhard Knobloch,et al.  Leibniz's Rigorous Foundation Of Infinitesimal Geometry By Means Of Riemannian Sums , 2002, Synthese.

[89]  Stephen W. Hawking,et al.  God Created the Integers: The Mathematical Breakthroughs That Changed History , 2005 .

[90]  I. Newton,et al.  The Principia : Mathematical Principles of Natural Philosophy , 2018 .

[91]  Philip Ehrlich,et al.  The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .

[92]  Gert Schubring,et al.  Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany , 2005 .

[93]  P. Mancosu,et al.  Detleff Clüver: An Early Opponent of the Leibnizian Differential Calculus , 1990 .

[94]  Carl B. Boyer,et al.  The Concepts of the Calculus , 1940 .

[95]  F. William Lawvere,et al.  Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body , 1980 .

[96]  E. Zermelo Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .

[97]  Edwin Hewitt,et al.  Rings of real-valued continuous functions. I , 1948 .

[98]  M. Katz,et al.  Two ways of obtaining infinitesimals by refining Cantor's completion of the reals , 2011, 1109.3553.

[99]  D. Laugwitz,et al.  Eine Erweiterung der Infinitesimalrechnung , 1958 .

[100]  René Taton,et al.  The Principal Works of Simon Stevin , 1959 .

[101]  Carl B. Boyer,et al.  The history of the calculus and its conceptual development. : (The concepts of the calculus) , 1939 .

[102]  H. Keisler Elementary Calculus: An Infinitesimal Approach , 1976 .

[103]  J. Pier Development of mathematics , 1994 .

[104]  Implicit Differentiation with Microscopes , 2010 .

[105]  G. Carchedi Dialectics and Temporality in Marx's Mathematical Manuscripts , 2008 .

[106]  Desmond Fearnley-Sander,et al.  Hermann Grassmann and the Creation of Linear Algebra , 1979 .

[107]  Kajsa Bråting,et al.  A new look at E.G. Björling and the Cauchy sum theorem , 2007 .

[108]  Jerzy Loś,et al.  Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .

[109]  W. Luxemburg Non-Standard Analysis , 1977 .

[110]  Karin U. Katz,et al.  When is .999... less than 1? , 2010, The Mathematics Enthusiast.

[111]  T. Skolem Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen , 1934 .

[112]  Lorenzo Magnani,et al.  Perceiving the Infinite and the Infinitesimal World: Unveiling and Optical Diagrams in Mathematics , 2005 .

[113]  Leif Arkeryd,et al.  Intermolecular forces of infinite range and the Boltzmann equation , 1981 .

[114]  D. Jesseph,et al.  Archimedes, Infinitesimals and the Law of Continuity: On Leibniz’s Fictionalism , 2008 .

[115]  Instructor’s Manual , 2003 .

[116]  A. Robinson From a formalist's point of view , 1969 .

[117]  D. J. Winter A History of Algebra. , 1988 .

[118]  The correctness of Euler's method for the factorization of the sine function into an infinite product , 1988 .

[119]  Mikhail G. Katz,et al.  Leibniz's laws of continuity and homogeneity , 2012, 1211.7188.

[120]  Heinrich Rust Operational Semantics for Timed Systems: A Non-standard Approach to Uniform Modeling of Timed and Hybrid Systems , 2005, Lecture Notes in Computer Science.

[121]  D. Tall Looking at graphs through infinitesimal microscopes, windows and telescopes , 1980, The Mathematical Gazette.

[122]  Larry M. Jorgensen The Principle of Continuity and Leibniz's Theory of Consciousness , 2009 .

[123]  Mikhail G. Katz,et al.  Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.

[124]  Alasdair Urquhart Mathematics and Physics: Strategies of Assimilation , 2008 .