A Polynomial Regularity Lemma for Semialgebraic Hypergraphs and Its Applications in Geometry and Property Testing

Fox, Gromov, Lafforgue, Naor, and Pach proved a regularity lemma for semi-algebraic $k$-uniform hypergraphs of bounded complexity, showing that for each $\epsilon>0$ the vertex set can be equitably partitioned into a bounded number of parts (in terms of $\epsilon$ and the complexity) so that all but an $\epsilon$-fraction of the $k$-tuples of parts are homogeneous. We prove that the number of parts can be taken to be polynomial in $1/\epsilon$. Our improved regularity lemma can be applied to geometric problems and to the following general question on property testing: is it possible to decide, with query complexity polynomial in the reciprocal of the approximation parameter, whether a hypergraph has a given hereditary property? We give an affirmative answer for testing typical hereditary properties for semi-algebraic hypergraphs of bounded complexity.

[1]  Jacob Fox,et al.  A tight lower bound for Szemerédi’s regularity lemma , 2017, Comb..

[2]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[3]  Kenneth L. Clarkson,et al.  A Randomized Algorithm for Closest-Point Queries , 1988, SIAM J. Comput..

[4]  Pavel Valtr,et al.  A Positive Fraction Erdos - Szekeres Theorem , 1998, Discret. Comput. Geom..

[5]  János Pach,et al.  Ramsey-type results for semi-algebraic relations , 2013, SoCG '13.

[6]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[7]  Vojtech Rödl,et al.  The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.

[8]  Terence Tao,et al.  Testability and repair of hereditary hypergraph properties , 2008, Random Struct. Algorithms.

[9]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[10]  Noga Alon,et al.  A characterization of easily testable induced subgraphs , 2004, SODA '04.

[11]  Bernard Chazelle,et al.  Cutting hyperplanes for divide-and-conquer , 1993, Discret. Comput. Geom..

[12]  Vojtech Rödl,et al.  Generalizations of the removal lemma , 2009, Comb..

[13]  Ronitt Rubinfeld,et al.  Robust Characterizations of Polynomials with Applications to Program Testing , 1996, SIAM J. Comput..

[14]  Noga Alon,et al.  Every monotone graph property is testable , 2005, STOC '05.

[15]  János Pach,et al.  Homogeneous selections from hyperplanes , 2014, J. Comb. Theory, Ser. B.

[16]  W. T. Gowers,et al.  Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[17]  Vojtech Rödl,et al.  Property testing in hypergraphs and the removal lemma , 2007, STOC '07.

[18]  Noga Alon,et al.  Crossing patterns of semi-algebraic sets , 2005, J. Comb. Theory, Ser. A.

[19]  H. Tverberg A Generalization of Radon's Theorem , 1966 .

[20]  Roman N. Karasev,et al.  A Simpler Proof of the Boros–Füredi–Bárány–Pach–Gromov Theorem , 2010, Discret. Comput. Geom..

[21]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1998, JACM.

[22]  Noga Alon,et al.  A characterization of the (natural) graph properties testable with one-sided error , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[23]  Asaf Shapira,et al.  A short proof of Gowers’ lower bound for the regularity lemma , 2016, Comb..

[24]  Noga Alon,et al.  Testing subgraphs in large graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[25]  Richard Pollack,et al.  The complexity of point configurations , 1991, Discret. Appl. Math..

[26]  János Pach,et al.  Overlap properties of geometric expanders , 2011, SODA '11.

[27]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[28]  David Conlon,et al.  Graph removal lemmas , 2012, Surveys in Combinatorics.

[29]  Jiří Matoušek Intersection Patterns of Convex Sets , 2002 .

[30]  David Conlon,et al.  Bounds for graph regularity and removal lemmas , 2011, ArXiv.

[31]  Sinisa T. Vrecica,et al.  The Colored Tverberg's Problem and Complexes of Injective Functions , 1992, J. Comb. Theory, Ser. A.

[32]  P. Erdös On extremal problems of graphs and generalized graphs , 1964 .

[33]  Leonidas J. Guibas,et al.  A Singly Exponential Stratification Scheme for Real Semi-Algebraic Varieties and its Applications , 1991, Theor. Comput. Sci..

[34]  János Pach,et al.  Crossing Patterns of Segments , 2001, J. Comb. Theory, Ser. A.

[35]  Alfredo Hubard,et al.  Space crossing numbers , 2011, SoCG '11.

[36]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[37]  Yoshiharu Kohayakawa,et al.  An Optimal Algorithm for Checking Regularity , 2003, SIAM J. Comput..

[38]  R. Pollack,et al.  Allowable Sequences and Order Types in Discrete and Computational Geometry , 1993 .

[39]  Jeong Hyun Kang,et al.  Combinatorial Geometry , 2006 .

[40]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[41]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[42]  János Pach A Tverberg-type result on multicolored simplices , 1998, Comput. Geom..

[43]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[44]  Martin Tancer,et al.  Bounds for Pach’s Selection Theorem and for the Minimum Solid Angle in a Simplex , 2015, Discret. Comput. Geom..

[45]  Alfredo Hubard,et al.  Order Types of Convex Bodies , 2010, Order.

[46]  Noga Alon,et al.  Easily Testable Graph Properties , 2015, Combinatorics, Probability and Computing.

[47]  János Pach,et al.  Density and regularity theorems for semi-algebraic hypergraphs , 2015, SODA.