Exponential improvement in precision for simulating sparse Hamiltonians

We provide a quantum algorithm for simulating the dynamics of sparse Hamiltonians with complexity sublogarithmic in the inverse error, an exponential improvement over previous methods. Specifically, we show that a d-sparse Hamiltonian H on n qubits can be simulated for time t with precision ε using O(τlog(τ/ε)/log log(τ/ε)) queries and O(τnlog2(τ/ε)/log log(τ/ε)) additional 2-qubit gates, where τ=d2||H||maxt. Unlike previous approaches based on product formulas, the query complexity is independent of the number of qubits acted on, and for time-varying Hamiltonians, the gate complexity is logarithmic in the norm of the derivative of the Hamiltonian. Our algorithm is based on a significantly improved simulation of the continuous- and fractional-query models using discrete quantum queries, showing that the former models are not much more powerful than the discrete model even for very small error. We also significantly simplify the analysis of this conversion, avoiding the need for a complex fault correction procedure. Our simplification relies on a new form of "oblivious amplitude amplification" that can be applied even though the reflection about the input state is unavailable. Finally, we prove new lower bounds showing that our algorithms are optimal as a function of the error.

[1]  Andrew M. Childs,et al.  Simulating Sparse Hamiltonians with Star Decompositions , 2010, TQC.

[2]  Andrew M. Childs,et al.  ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN TIME N ON A QUANTUM COMPUTER∗ , 2010 .

[3]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[4]  Andrew M. Childs,et al.  Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[5]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[6]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[7]  Richard Cleve,et al.  Gate-efficient discrete simulations of continuous-time quantum query algorithms , 2012, Quantum Inf. Comput..

[8]  M. Sipser,et al.  Limit on the Speed of Quantum Computation in Determining Parity , 1998, quant-ph/9802045.

[9]  Michele Mosca,et al.  Efficient discrete-time simulations of continuous-time quantum query algorithms , 2008, STOC '09.

[10]  Carlos Mochon Hamiltonian Oracles , 2006 .

[11]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[12]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[13]  Martin Rötteler,et al.  Quantum arithmetic and numerical analysis using Repeat-Until-Success circuits , 2014, Quantum Inf. Comput..

[14]  R. Feynman Simulating physics with computers , 1999 .

[15]  Andris Ambainis,et al.  Any AND-OR Formula of Size N can be Evaluated in time N^{1/2 + o(1)} on a Quantum Computer , 2010, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[16]  Andrew M. Childs,et al.  Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..

[17]  Shengyu Zhang,et al.  Every NAND formula of size N can be evaluated in time N^{1/2+o(1)} on a quantum computer , 2007 .

[18]  Barry C. Sanders,et al.  Simulating quantum dynamics on a quantum computer , 2010, 1011.3489.

[19]  Aleksandrs Belovs Variations on Quantum Adversary , 2015 .

[20]  Andris Ambainis,et al.  Any AND-OR Formula of Size N Can Be Evaluated in Time N1/2+o(1) on a Quantum Computer , 2010, SIAM J. Comput..

[21]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[22]  Andrew M. Childs,et al.  Quantum information processing in continuous time , 2004 .

[23]  Annie Y. Wei,et al.  Exponentially more precise quantum simulation of fermions in second quantization , 2015, 1506.01020.

[24]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[25]  John Watrous,et al.  Zero-knowledge against quantum attacks , 2005, STOC '06.

[26]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[27]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[28]  de Hans Raedt,et al.  PRODUCT FORMULA METHODS FOR TIME-DEPENDENT SCHRODINGER PROBLEMS , 1990 .

[29]  Troy Lee,et al.  Quantum Query Complexity of State Conversion , 2010, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[30]  Yong Zhang,et al.  Fast amplification of QMA , 2009, Quantum Inf. Comput..

[31]  Andrew M. Childs,et al.  Discrete-Query Quantum Algorithm for NAND Trees , 2009, Theory Comput..

[32]  Krysta Marie Svore,et al.  Repeat-until-success: non-deterministic decomposition of single-qubit unitaries , 2013, Quantum Inf. Comput..

[33]  F. Verstraete,et al.  Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. , 2011, Physical review letters.

[34]  Andrew M. Childs,et al.  Universal Computation by Multiparticle Quantum Walk , 2012, Science.

[35]  Matthias Christandl,et al.  Perfect state transfer in quantum spin networks. , 2004, Physical review letters.

[36]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[37]  Chris Marriott,et al.  Quantum Arthur–Merlin games , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[38]  Edward Farhi,et al.  A Quantum Algorithm for the Hamiltonian NAND Tree , 2008, Theory Comput..

[39]  Andris Ambainis,et al.  Symmetry-Assisted Adversaries for Quantum State Generation , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[40]  Theory of Quantum Computation, Communication, and Cryptography , 2010, Lecture Notes in Computer Science.

[41]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[42]  Andris Ambainis A nearly optimal discrete query quantum algorithm for evaluating NAND formulas , 2007 .

[43]  Andrew M. Childs,et al.  Universal computation by multi-particle quantum walk arXiv , 2012 .

[44]  C. Jordan Essai sur la géométrie à $n$ dimensions , 1875 .

[45]  Edward Farhi,et al.  Analog analogue of a digital quantum computation , 1996 .

[46]  Alán Aspuru-Guzik,et al.  Exponentially more precise quantum simulation of fermions II: Quantum chemistry in the CI matrix representation , 2015 .

[47]  B. D. Clader,et al.  Preconditioned quantum linear system algorithm. , 2013, Physical review letters.

[48]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.