Effective nonlinear GaSe crystal. Optical properties and applications

We present an overview of the current state of the literature and research performed by the authors of the present paper on the experimental and theoretical results on the structural-, optical-, nonlinear optical (NLO)-properties (including two-photon absorption (TPA) and the terahertz (THz) range of spectra) and practical applications of a highly anisotropic Gallium Selenide (GaSe) semiconductor with emphasis on the ɛ-GaSe. Physical properties of ɛ-GaSe are important to researchers and designers developing different devices by using this material. This crystal possesses an outstanding NLO properties: high optical birefringence Δn ∼ 0.3 at 700 nm; high transparency range (0.7−18.0 μm) with low absorption coefficient (α ≤ 0.3 cm−1); very high nonlinear susceptibility χ(2) (d22 ≈ 86 ± 17 pm/V, corresponding to (2.0 ± 0.4) × 10−7 esu) that is used for phase matched second harmonic generation (SHG) in a wide transparency range; high power threshold for optical damage; possibility to perform optical frequency conversion under phase-matching conditions in the near- to mid-IR and THz range of spectra, etc. The domain structure of crystal in connection with the NLO properties is discussed as studied by confocal Raman microscopy experiments. Perspectives for future research of GaSe are considered in the present article, which does not pretend to be one reflecting all existing papers on GaSe crystal and discussed subjects.

[1]  R. Fivaz,et al.  Mobility of Charge Carriers in Semiconducting Layer Structures , 1967 .

[2]  N. Fernelius,et al.  Properties of gallium selenide single crystal , 1994 .

[3]  A. Prokhorov,et al.  Difference frequency generation in a GaSe crystal with continuous tuning in the 560-1050 cm -1 range , 1976 .

[4]  V. L. Cardetta,et al.  Melt growth of single crystal ingots of GaSe by Bridgman-Stockbarger's method , 1972 .

[5]  Gopal C. Bhar,et al.  Nonlinear optical laser devices using GaSe , 1995 .

[6]  S. Nagamiya The γ-ray pad pattern in the presence of two isomeric levels , 1974 .

[7]  N. V. Shevchenko,et al.  Nonohmic hopping conductivity in semimagnetic semiconductor p-Mn x Hg 1-x Te , 1990 .

[8]  G. L. Belen'kiǐ,et al.  REVIEWS OF TOPICAL PROBLEMS: Electronic and vibrational spectra of III-VI layered semiconductors , 1983 .

[9]  Kerim R. Allakhverdiev,et al.  Comparison of the Layered Semiconductors GaSe, GaS, and GaSe1-xSx by Raman and Photoluminescence Spectroscopy , 2005 .

[10]  Wei Shi,et al.  Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal. , 2002, Optics letters.

[11]  W. Y. Liang Optical anisotropy in GaSe , 1975 .

[12]  K. Allakhverdiev,et al.  Second-harmonic generation in GaSe crystals investigated with the Maker fringe technique , 1997 .

[13]  T. Yamazaki,et al.  Characteristics of Impurity-Doped GaSe Radiation Detectors , 1993 .

[14]  T. Wieting,et al.  Interlayer Bonding and the Lattice Vibrations ofβ-GaSe , 1972 .

[15]  M. Garbi,et al.  Down-conversion in the 4–18 μm range with GaSe and AgGaSe2 nonlinear crystals , 1979 .

[16]  M. Musci,et al.  4–12 μm tunable down-conversion in GaSe from a LiNbO3 parametric oscillator , 1978 .

[17]  E. Mooser,et al.  Indirect Energy Gap in GaSe and GaS , 1969 .

[18]  Wei Shi,et al.  Generation of backward terahertz waves in GaSe crystals. , 2005, Optics letters.

[19]  K. Allakhverdiev,et al.  On a Possibility to Form Small Crystallites of Layered Gallium Selenide via Ultrasonic Treatment , 1997 .

[20]  N. Watanabe,et al.  Anomalously Large Shift of Absorption Edge of GaSe-Based Layered Crystal by Applied Electric Field , 1990 .

[21]  N. I. Chapliev,et al.  Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal , 1989 .

[22]  Y. Depeursinge,et al.  Polytypism and layer-layer interaction in the III–VI layer semiconductors , 1981 .

[23]  Hartmut Haug,et al.  Optical switching in low-dimensional systems , 1989 .

[24]  Alfred Leitenstorfer,et al.  Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared , 2004 .

[25]  R. R. Alfano,et al.  Semiconductors probed by ultrafast laser spectroscopy , 1984 .

[26]  J. Oudar,et al.  Medium infrared tunable down conversion of a YAG-pumped infrared dye laser in gallium selenide , 1979 .

[27]  Yaochun Shen Principles of nonlinear optics , 1984 .

[28]  T. Ugumori 4 – Luminescence and Absorption in Layered Semiconductors under Intense Excitation , 1984 .

[29]  K. Allakhverdiev,et al.  Corrected infrared Sellmeier coefficients for gallium selenide , 2005 .

[30]  W. Klemm,et al.  Messungen an Gallium- und Indium-Verbindungen. X. Über die Chalkogenide von Gallium und Indium , 1934 .

[31]  A. Barron,et al.  Chemical vapor deposition of Gallium selenide and indium selenide nanoparticles , 1996 .

[32]  Ryuichi Mori,et al.  Phase Study on Binary System Ga-Se , 1974 .

[33]  Y. Andreev,et al.  Modified GaSe crystal as a parametric frequency converter , 2006 .

[34]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[35]  Kerim R. Allakhverdiev,et al.  BRIEF COMMUNICATIONS: Investigation of linear and nonlinear optical properties of GaSxSe1-x crystals , 1982 .

[36]  Y. Nishina,et al.  Photoluminescence studies of indirect bound excitons inε−GaSe , 1981 .

[37]  G. Ghosh,et al.  Infrared temperature tunability in GaSe, HgS, and Tl 3 AsSe 3 nonlinear devices , 1983 .

[38]  Generation of tunable coherent far-infrared waves based on backward optical parametric oscillation in gallium selenide , 1998 .

[39]  A. Castellano GaSe detectors for x‐ray beams , 1986 .

[40]  D. F. Kelley,et al.  Relaxation dynamics in photoexcited GaSe nanoparticles , 2002 .

[41]  K. Vodopyanov Mid-infrared optical parametric generator with extra-wide (3–19-µm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells , 1999 .

[42]  D. Nikogosyan Nonlinear optics crystals (review and summary of data) , 1977 .

[43]  K. Nagata,et al.  Structural phase transitions of Ga2Se3 and GaSe under high pressure , 2001 .

[44]  Gopal C. Bhar,et al.  Tunable coherent infrared source from 5-16 µm based on difference-frequency mixing in an indium-doped GaSe crystal , 2006 .

[45]  L. Vasanelli,et al.  A particular application of GaSe semiconductor detectors in the neutrino experiment at CERN , 1975 .

[46]  Satoru Nakashima,et al.  Phonon Raman spectra of layer compound GaSe , 1973 .

[47]  S. Onari,et al.  Lattice vibrations of pure and doped GaSe , 2006 .

[48]  E. Eliel,et al.  Frequency doubling of mid-infrared radiation in gallium selenide. , 1996, Optics letters.

[49]  A. Seilmeier,et al.  Anisotropy of two-photon absorption in gallium selenide at 1064 nm , 2006 .

[50]  A. Barron,et al.  Metal–Organic chemical vapour deposition of polycrystalline tetragonal indium sulphide (InS) thin films , 1992 .

[51]  M. Balkanski,et al.  Integrable lithium solid-state microbatteries , 1989 .

[52]  W. V. D. Vleuten,et al.  New polytypes in vapour grown GaSe , 1975 .

[53]  D R Suhre,et al.  Improved crystal quality and harmonic generation in GaSe doped with indium. , 1997, Optics letters.

[54]  Yaochun Shen,et al.  Optical properties of GaSe andGaSxSe1−xmixed crystals , 1976 .

[55]  D. F. Kelley,et al.  Synthesis of Highly Luminescent GaSe Nanoparticles , 2002 .

[56]  Phase‐matched second‐harmonic generation at 789.5 nm in a GaSe crystal , 1996 .

[57]  K. Allakhverdiev,et al.  Photoluminescence frequency up-conversion in GaSe single crystals as studied by confocal microscopy , 2002 .

[58]  Lothar Kador,et al.  Second-Harmonic Generation in GaS Crystals , 1997 .

[59]  A. Gouskov,et al.  Growth and characterization of III–VI layered crystals like GaSe, GaTe, InSe, GaSe1-xTex and GaxIn1-xSe , 1982 .

[60]  France.,et al.  Investigation of acceptor levels and hole scattering mechanisms in p-gallium selenide by means of transport measurements under pressure , 1997, cond-mat/9710296.

[61]  A. M. Prokhorov,et al.  LETTERS TO THE EDITOR: Parametric conversion of infrared radiation in a GaSe crystal , 1975 .

[62]  L. Vasanelli,et al.  GaSe as nuclear particle detector , 1974 .

[63]  Miguel V. Andrés,et al.  Strong optical nonlinearities in gallium and indium selenides related to inter-valence-band transitions induced by light pulses , 1997 .

[64]  A. Aruchamy,et al.  Photoelectrochemistry and photovoltaics of layered semiconductors , 1992 .

[65]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[66]  I. Bayanov,et al.  Intense subpicosecond pulses tunable between 4 μm and 20 μm generated by an all-solid-state laser system , 1994 .

[67]  V. D. Egorov,et al.  Pump-pulse induced chirp production in semiconductors , 1988 .

[68]  Y. Iwamura,et al.  New Light Modulator Using GaSe Layered Crystal , 1990 .

[69]  A. Rizzo,et al.  Lattice vibrations and the crystal structure of GaS and GaSe , 1974 .

[70]  D. F. Kelley,et al.  Exciton dynamics of GaSe nanoparticle aggregates. , 2005, The Journal of chemical physics.

[71]  K. Allakhverdiev,et al.  Confocal photoluminescence studies on GaSe single crystals , 2002 .

[72]  F. Bundy,et al.  Pressure‐induced metallic and superconducting state of GaSe , 1980 .

[73]  M. Balkanski,et al.  Optical absorption edge of a new GaSe polytype , 1975 .

[74]  D. Suhre,et al.  Far-infrared conversion materials: Gallium selenide for far-infrared conversion applications , 1998 .

[75]  Konstantin L. Vodopyanov,et al.  Parametric generation of tunable infrared radiation in ZnGeP 2 and GaSe pumped at 3 μm , 1993 .

[76]  Ph. Kupecek,et al.  Conversion de frequences optiques dans le seleniure de gallium (GaSe) , 1974 .

[77]  A. Polian,et al.  Low-frequency lattice vibrations of δ-GaSe compared to ϵ- and γ-polytypes , 1976 .

[78]  C. Joshi,et al.  High-power tunable, 0.5-3 THz radiation source based on nonlinear difference frequency mixing of CO 2 laser lines , 2007 .

[79]  D. F. Kelley,et al.  Electron and Hole Intraband Spectroscopy of GaSe Nanoparticles , 2003 .

[80]  J. Brebner,et al.  Electrical resistivity and hall effect of single crystals of GaTe and GaSe , 1962 .

[81]  Konstantin L. Vodopyanov,et al.  New dispersion relationships for GaSe in the 0.65–18 μm spectral region , 1995 .

[82]  N. Barnes,et al.  Absorption coefficients and the temperature variation of the refractive index difference of nonlinear optical crystals , 1979, IEEE Journal of Quantum Electronics.

[83]  Jonathan T. Goldstein,et al.  Anisotropy of optical absorption in GaSe studied by midinfrared spectroscopy , 2003 .

[84]  Heinrich Kurz,et al.  Generation of coherent phonons in condensed media , 1992 .

[85]  R. S. Putnam,et al.  Continuous-wave laser spectrometer automatically aligned and continuously tuned from 11.8 to 16.1 microm by use of diode-laser-pumped difference-frequency generation in GaSe. , 1999, Applied optics.

[86]  E. Mooser,et al.  Semiconductors of the type AIIIBVI , 1959 .

[87]  C. Tatsuyama,et al.  Average energy needed to produce an electron-hole pair in GaSe nuclear particle detectors , 1988 .