Cerebral Oximetry Monitoring in Extremely Preterm Infants.

BACKGROUND The use of cerebral oximetry monitoring in the care of extremely preterm infants is increasing. However, evidence that its use improves clinical outcomes is lacking. METHODS In this randomized, phase 3 trial conducted at 70 sites in 17 countries, we assigned extremely preterm infants (gestational age, <28 weeks), within 6 hours after birth, to receive treatment guided by cerebral oximetry monitoring for the first 72 hours after birth or to receive usual care. The primary outcome was a composite of death or severe brain injury on cerebral ultrasonography at 36 weeks' postmenstrual age. Serious adverse events that were assessed were death, severe brain injury, bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, and late-onset sepsis. RESULTS A total of 1601 infants underwent randomization and 1579 (98.6%) were evaluated for the primary outcome. At 36 weeks' postmenstrual age, death or severe brain injury had occurred in 272 of 772 infants (35.2%) in the cerebral oximetry group, as compared with 274 of 807 infants (34.0%) in the usual-care group (relative risk with cerebral oximetry, 1.03; 95% confidence interval, 0.90 to 1.18; P = 0.64). The incidence of serious adverse events did not differ between the two groups. CONCLUSIONS In extremely preterm infants, treatment guided by cerebral oximetry monitoring for the first 72 hours after birth was not associated with a lower incidence of death or severe brain injury at 36 weeks' postmenstrual age than usual care. (Funded by the Elsass Foundation and others; SafeBoosC-III ClinicalTrials.gov number, NCT03770741.).

G. Dimitriou | A. Curley | G. Greisen | H. Fuchs | O. Baud | F. Mosca | M. Fumagalli | J. Jakobsen | A. Smits | L. Thewissen | G. Naulaers | A. Truttmann | A. Klamer | C. Hagmann | A. El-Khuffash | G. H. Hahn | G. Pichler | B. Urlesberger | L. Chalak | G. Vento | M. Wilińska | E. Mastretta | M. Baserga | K. Sarafidis | A. Alarcon | E. Ergenekon | M. Stocker | M. Agosti | Z. Vesoulis | M. H. Olsen | M. Çetinkaya | E. Hatzidaki | B. Królak-Olejnik | S. Nesargi | E. Valverde | S. Hyttel-Sorensen | L. Arruza | R. Lauterbach | S. Marciniak | A. Pellicer | J. Mintzer | M. Hansen | M. I. Rasmussen | G. Cheng | Xin Xu | M. Ybarra | Tone Nordvik | S. Fredly | A. Memişoğlu | N. Koksal | A. Hopper | S. Pisoni | J. Miletin | P. Agergaard | Zhaoqing Yin | C. Gluud | T. Szczapa | I. Sadowska-Krawczenko | B. Rzepecka-Węglarz | E. Bergón-Sendín | C. Morales-Betancourt | I. de las Cuevas | M. Bas | A. Heuchan | J. Tkaczyk | H. Ozkan | L. Cornette | J. Baumgartner | Ling Yang | C. Lecart | L. Bender | E. Papathoma | P. Korček | Claudia Knöpfli | E. Dempsey | J. Širc | I. Serrano-Viñuales | S. Zeng | Salvador Piris-Borregas | P. Maton | J. Kučera | E. Skylogianni | A. Bargiel | Ş. Oğuz | K. Tsoni | B. Yaşa | Marta Teresa-Palacio | Pamela Zafra | Ruth del Rio Florentino | T. Karen | Xiao-Min Gao | M. Kadri | Elżbieta Rafińska-Ważny | Zhang Peng | J. de Buyst | D. Healy | S. G. Kersin | O. O. Vaccarello | B. L. González | L. S. Lopez | M. Akin | Anja Hergenhan | Miguel Alsina-Casanova | Karen McCall | Lin Huijia | Shashidhar A Rao | Catalina Morales-Betancourt | Veronika Karadyova | Le Wang | Rebeca Sánchez-Salmador | Aksel K Jensen | S. Kersin | Eleni Skylogianni | Eugene Dempsey | Iwona Sadowska-Krawczenko | Itziar Serrano-Viñuales | S. A. Rao | Tomasz Szczapa | Salvador Piris-Borregas

[1]  G. Greisen,et al.  Cerebral near-infrared spectroscopy monitoring (NIRS) in children and adults: a systematic review with meta-analysis , 2022, Pediatric Research.

[2]  G. Dimitriou,et al.  Central data monitoring in the multicentre randomised SafeBoosC-III trial – a pragmatic approach , 2021, BMC Medical Research Methodology.

[3]  P. Shah,et al.  Duration of and trends in respiratory support among extremely preterm infants , 2020, Archives of Disease in Childhood.

[4]  G. Dimitriou,et al.  Detailed statistical analysis plan for the SafeBoosC III trial: a multinational randomised clinical trial assessing treatment guided by cerebral oxygenation monitoring versus treatment as usual in extremely preterm infants , 2019, Trials.

[5]  G. Dimitriou,et al.  Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants: a protocol for the SafeBoosC randomised clinical phase III trial , 2019, Trials.

[6]  G. Greisen,et al.  Pilot test of an online training module on near-infrared spectroscopy monitoring for the randomised clinical trial SafeBoosC-III , 2019, Trials.

[7]  P. Smielewski,et al.  Changes in hemodynamics, cerebral oxygenation and cerebrovascular reactivity during the early transitional circulation in preterm infants , 2019, Pediatric Research.

[8]  K. Lui,et al.  Patterns of use of near‐infrared spectroscopy in neonatal intensive care units: international usage survey , 2018, Acta paediatrica.

[9]  B. Vohr,et al.  Neurodevelopmental Impairment Among Extremely Preterm Infants in the Neonatal Research Network , 2018, Pediatrics.

[10]  M. Kluckow The Pathophysiology of Low Systemic Blood Flow in the Preterm Infant , 2018, Front. Pediatr..

[11]  Per Winkel,et al.  When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts , 2017, BMC Medical Research Methodology.

[12]  Julian P T Higgins,et al.  Association Between Risk-of-Bias Assessments and Results of Randomized Trials in Cochrane Reviews: The ROBES Meta-Epidemiologic Study , 2017, American journal of epidemiology.

[13]  F. Gilles,et al.  Hypoxia–ischemia is not an antecedent of most preterm brain damage: the illusion of validity , 2017, Developmental medicine and child neurology.

[14]  N. Modi,et al.  Research ethics committee decision-making in relation to an efficient neonatal trial , 2016, Archives of Disease in Childhood: Fetal and Neonatal Edition.

[15]  Martin Wolf,et al.  Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial , 2015, BMJ : British Medical Journal.

[16]  E. Dempsey,et al.  The SafeBoosC Phase II Randomised Clinical Trial: A Treatment Guideline for Targeted Near-Infrared-Derived Cerebral Tissue Oxygenation versus Standard Treatment in Extremely Preterm Infants , 2013, Neonatology.

[17]  B. Poindexter,et al.  Neonatal Outcomes of Extremely Preterm Infants From the NICHD Neonatal Research Network , 2010, Pediatrics.

[18]  Anna L. Ells,et al.  The International Classification of Retinopathy of Prematurity revisited. , 2005, Archives of ophthalmology.

[19]  G. Greisen Autoregulation of cerebral blood flow in newborn babies. , 2005, Early human development.

[20]  G. Greisen,et al.  Cerebral palsy births in eastern Denmark, 1987--90: implications for neonatal care. , 2001, Paediatric and perinatal epidemiology.

[21]  G. Greisen,et al.  Cerebral Blood Flow, PaCO2 Changes, and Visual Evoked Potentials in Mechanically Ventilated, Preterm Infants , 1987, Acta paediatrica Scandinavica.

[22]  G. Greisen,et al.  Is periventricular leucomalacia a result of hypoxic-ischaemic injury? Hypocapnia and the preterm brain. , 2001, Biology of the neonate.