Modeling and Analysis of Cost Data

[1]  Lili Tian Inferences on the mean of zero‐inflated lognormal data: the generalized variable approach , 2005, Statistics in medicine.

[2]  C. Land,et al.  An Evaluation of Approximate Confidence Interval Estimation Methods for Lognormal Means , 1972 .

[3]  W. Tu,et al.  Comparison of Several Independent Population Means When Their Samples Contain Log‐Normal and Possibly Zero Observations , 1999, Biometrics.

[4]  Xiao-Hua Zhou,et al.  Estimating the retransformed mean in a heteroscedastic two-part model , 2006 .

[5]  B. Efron Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods , 1981 .

[6]  Andrew Briggs,et al.  Parametric modelling of cost data: some simulation evidence. , 2005, Health economics.

[7]  Xiao-Hua Zhou,et al.  Confidence intervals for the log-normal mean . , 1997, Statistics in medicine.

[8]  D. Naiman,et al.  Smooth quantile ratio estimation , 2005 .

[9]  X H Zhou,et al.  Methods for comparing the means of two independent log-normal samples. , 1997, Biometrics.

[10]  Peter Hall,et al.  On the Removal of Skewness by Transformation , 1992 .

[11]  H. Iyer,et al.  Fiducial Generalized Confidence Intervals , 2006 .

[12]  Samaradasa Weerahandi,et al.  Generalized Confidence Intervals , 1993 .

[13]  X H Zhou Estimation of the log-normal mean. , 1998, Statistics in medicine.

[14]  Guoyong Jiang,et al.  Likelihood‐based confidence intervals for a log‐normal mean , 2003, Statistics in medicine.

[15]  J. Aitchison On the Distribution of a Positive Random Variable Having a Discrete Probability Mass at the Origin , 1955 .

[16]  Xiao-Hua Zhou,et al.  One-Sided Confidence Intervals for Means of Positively Skewed Distributions , 2000 .

[17]  Huazhen Lin,et al.  Non‐parametric heteroscedastic transformation regression models for skewed data with an application to health care costs , 2008 .

[18]  T. Mathew,et al.  Inferences on the means of lognormal distributions using generalized p-values and generalized confidence intervals , 2003 .

[19]  Xue Li,et al.  Statistical inference for the common mean of two log-normal distributions and some applications in reliability , 2006, Comput. Stat. Data Anal..

[20]  X H Zhou,et al.  Confidence Intervals for the Mean of Diagnostic Test Charge Data Containing Zeros , 2000, Biometrics.

[21]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[22]  N. Duan Smearing Estimate: A Nonparametric Retransformation Method , 1983 .

[23]  C. Ai,et al.  Standard errors for the retransformation problem with heteroscedasticity. , 2000, Journal of health economics.

[24]  Kam-Wah Tsui,et al.  Generalized p-Values in Significance Testing of Hypotheses in the Presence of Nuisance Parameters , 1989 .

[25]  R. Fisher THE FIDUCIAL ARGUMENT IN STATISTICAL INFERENCE , 1935 .

[26]  G. Box Science and Statistics , 1976 .

[27]  M C Hornbrook,et al.  Modeling risk using generalized linear models. , 1999, Journal of health economics.

[28]  W. J. Owen,et al.  Estimation of the Mean for Lognormal Data Containing Zeroes and Left-Censored Values, with Applications to the Measure- ment of Worker Exposure to Air Contaminants , 1980 .

[29]  Anirban Basu,et al.  Generalized Modeling Approaches to Risk Adjustment of Skewed Outcomes Data , 2003, Journal of health economics.

[30]  W. Manning,et al.  The logged dependent variable, heteroscedasticity, and the retransformation problem. , 1998, Journal of health economics.

[31]  J. Kesterson,et al.  Association of Symptoms of Depression with Diagnostic Test Charges among Older Adults , 1997, Annals of Internal Medicine.

[32]  Xiao-Hua Zhou,et al.  Interval estimates for the ratio and difference of two lognormal means , 2006, Statistics in medicine.

[33]  S. Weisberg Applied Linear Regression: Weisberg/Applied Linear Regression 3e , 2005 .

[34]  Lili Tian,et al.  Confidence Intervals for the Mean of Lognormal Data with Excess Zeros , 2006, Biometrical journal. Biometrische Zeitschrift.

[35]  W. Manning,et al.  Estimating Log Models: To Transform or Not to Transform? , 1999, Journal of health economics.