On relativistic effects in ground state potential curves of Zn2, Cd2, and Hg2 dimers. A CCSD(T) study

The ground state potential curves of the Zn2, Cd2, and Hg2 dimers calculated at different levels of theory are presented and compared with each other as well as with experimental and other theoretical studies. The calculations at the level of Dirac‐Coulomb Hamiltonian (DCH), 4‐component spin‐free Hamiltonian, nonrelativistic Lévy–Leblond Hamiltonian and at the level of simple Coulombic correction to DCH are presented. The potential curves are calculated in an all‐electron supermolecular approach including the correction to basis set superposition error (BSSE). Electron correlation is treated at the coupled cluster level including single and double excitations and noniterative triple corrections, CCSD(T). In addition, simulations of the temperature dependence of dynamic viscosities in the low‐density limit using the obtained ground state potential curves are presented. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009

[1]  P. Pyykkö,et al.  The polarisability of Hg and the ground-state interaction potential of Hg2 , 1994 .

[2]  J. Koperski,et al.  THE CD2 AND ZN2 VAN DER WAALS DIMERS REVISITED. CORRECTION FOR SOME MOLECULAR POTENTIAL PARAMETERS , 1999 .

[3]  Michael Dolg,et al.  The Beijing four-component density functional program package (BDF) and its application to EuO, EuS, YbO and YbS , 1997 .

[4]  Vladimír Lukes,et al.  On the structure and physical origin of van der Waals interaction in zinc, cadmium and mercury dimers , 2006 .

[5]  H. Stoll,et al.  Potential energy curves for the Zn2 dimer , 1996 .

[6]  Yoshihiro Watanabe,et al.  Gaussian‐type function set without prolapse for the Dirac–Fock–Roothaan equation , 2003, J. Comput. Chem..

[7]  V. Kellö,et al.  Polarized basis sets for high-level-correlated calculations of molecular electric properties , 1995 .

[8]  W. Schwarz An Introduction to Relativistic Quantum Chemistry , 2010 .

[9]  Roberto L. A. Haiduke,et al.  Accurate relativistic adapted Gaussian basis sets for Cesium through Radon without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models , 2006, J. Comput. Chem..

[10]  P. Schwerdtfeger,et al.  The chemistry of the superheavy elements. I. Pseudopotentials for 111 and 112 and relativistic coupled cluster calculations for (112)H+, (112)F2, and (112)F4 , 1997 .

[11]  V. Kellö,et al.  Estimates of relativistic contributions to molecular properties , 1990 .

[12]  K. Fægri Even tempered basis sets for four-component relativistic quantum chemistry , 2005 .

[13]  P. Dirac Quantum Mechanics of Many-Electron Systems , 1929 .

[14]  K. Dyall An exact separation of the spin‐free and spin‐dependent terms of the Dirac–Coulomb–Breit Hamiltonian , 1994 .

[15]  H. Tatewaki,et al.  Chemically reliable uncontracted Gaussian-type basis sets for atoms H to Lr , 2000 .

[16]  Gulzari Malli,et al.  Relativistic and electron correlation effects in molecules and solids , 1994 .

[17]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[18]  K. Fægri Relativistic Gaussian basis sets for the elements K – Uuo , 2001 .

[19]  T. Helgaker,et al.  Static and frequency-dependent dipole-dipole polarizabilities of all closed-shell atoms up to radium: a four-component relativistic DFT study. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  T. Zwier,et al.  Direct spectroscopic determination of the Hg2 bond length and an analysis of the 2540 Å band , 1988 .

[21]  F. E. Jorge,et al.  Highly accurate relativistic gaussian basis sets for closed-shell atoms from He through to No , 2000 .

[22]  K. Dyall,et al.  Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples , 1996 .

[23]  Goebel,et al.  Theoretical and experimental determination of the polarizabilities of the zinc 1S0 state. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[24]  Jean-Marc Lévy-Leblond,et al.  Nonrelativistic particles and wave equations , 1967 .

[25]  Goebel,et al.  Dispersion of the refractive index of cadmium vapor and the dipole polarizability of the atomic cadmium 1S0 state. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  Y. Ishikawa,et al.  Universal Gaussian basis set for relativistic calculations on atoms and molecules , 1993 .

[27]  B. A. Hess,et al.  Relativistic effects on electric properties of many‐electron systems in spin‐averaged Douglas–Kroll and Pauli approximations , 1996 .

[28]  O. Matsuoka,et al.  Relativistic Gaussian basis sets for molecular calculations: Cs–Hg , 2001 .

[29]  H. Stoll,et al.  Adiabatic potential curves for the Cd2 dimer , 1994 .

[30]  W. C. Ermler Relativistic Effects in Chemistry Part A: Theory and Techniques By Krishnan Balasubramanian (Arizona State University). Wiley Interscience: New York. 1997. xiii + 301 pp. $145.00 (paperback $84.95). ISBN 0-471-30400-X. , 1998 .

[31]  Kirk A Peterson,et al.  Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2005, The Journal of chemical physics.

[32]  J. Koperski,et al.  The 30u+(43P1)andX0g+-state potentials of Zn2 obtained from excitation spectrum recorded at the 30u+←X10g+ transition , 2006 .

[33]  Amitabh Das,et al.  Spectroscopic properties of Zn2, ZnHe, ZnNe and ZnAr van der Waals molecules: A CCSD(T) study , 2007 .

[34]  Lucas Visscher,et al.  Approximate molecular relativistic Dirac-Coulomb calculations using a simple Coulombic correction , 1997 .

[35]  W. Kutzelnigg Basis set expansion of the dirac operator without variational collapse , 1984 .

[36]  Lucas Visscher,et al.  The Dirac equation in quantum chemistry: Strategies to overcome the current computational problems , 2002, J. Comput. Chem..

[37]  Lucas Visscher,et al.  RELATIVISTIC QUANTUM-CHEMISTRY - THE MOLFDIR PROGRAM PACKAGE , 1994 .

[38]  K. Dyall,et al.  Relativistic four‐component multiconfigurational self‐consistent‐field theory for molecules: Formalism , 1996 .

[39]  J. Koperski,et al.  The 0+u(6 3P1)←X0+g spectrum of Hg2 excited in a supersonic jet , 1994 .

[40]  Cristina Puzzarini,et al.  Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements , 2005 .

[41]  G. L. Payne,et al.  Relativistic Quantum Mechanics , 2007 .

[42]  J. Koperski Study of diatomic van der Waals complexes in supersonic beams , 2002 .

[43]  K. Dyall Relativistic and nonrelativistic finite nucleus optimized triple-zeta basis sets for the 4p, 5p and 6p elements , 1998 .

[44]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 5d elements Hf–Hg , 2004 .

[45]  P. Schwerdtfeger,et al.  The potential energy curve and dipole polarizability tensor of mercury dimer , 2001 .

[46]  K. Hirao,et al.  Accurate relativistic Gaussian basis sets determined by the third-order Douglas–Kroll approximation with a finite-nucleus model , 2002 .

[47]  Lucas Visscher,et al.  Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions , 1997 .

[48]  R. Drullinger,et al.  Experimental studies of mercury molecules , 1977 .

[49]  Y. Ishikawa,et al.  Relativistic universal Gaussian basis set for Dirac—Fock—Coulomb and Dirac—Fock—Breit SCF calculations on heavy atoms , 1993 .

[50]  U. Hohm,et al.  DIPOLE POLARIZABILITY, CAUCHY MOMENTS, AND RELATED PROPERTIES OF HG , 1996 .

[51]  F. E. Jorge,et al.  Adapted Gaussian basis sets for the relativistic closed-shell atoms from helium to barium generated with the generator coordinate Dirac-Fock method , 1996 .

[52]  Y. Mochizuki,et al.  Prolapses in four-component relativistic Gaussian basis sets , 2003 .

[53]  P. Schwerdtfeger,et al.  The frequency-dependent dipole polarizability of the mercury dimer from four-component relativistic density-functional theory. , 2006, The Journal of chemical physics.

[54]  J. Koperski,et al.  Rotational structure of the υ′=45←υ″=0 band of the 10u+(51P1)←X10g+ transition in 228Cd2: Direct determination of the ground- and excited-state bond lengths , 2007 .

[55]  M. Dolg,et al.  Covalent contributions to bonding in group 12 dimers M2 (Mn = Zn, Cd, Hg) , 1997 .

[56]  T. Saue,et al.  Quaternion symmetry in relativistic molecular calculations: The Dirac–Hartree–Fock method , 1999 .

[57]  C. Pouchan,et al.  An ab initio study of the electronic spectrum of Zn2 including spin–orbit coupling , 2005 .

[58]  S. Ceccherini,et al.  Interatomic potentials of group IIB atoms (ground state) , 2001 .

[59]  Paweł Sałek,et al.  Dalton, a molecular electronic structure program , 2005 .

[60]  Trygve Helgaker,et al.  Principles of direct 4-component relativistic SCF: application to caesium auride , 1997 .

[61]  Christian F. Kunz,et al.  Ab initio study of the individual interaction energy components in the ground state of the mercury dimer , 1996 .

[62]  J. Koperski,et al.  Is Cd2 truly a van der Waals molecule? Analysis of rotational profiles recorded at the A0u+, B1u←X0g+ transitions , 2007 .

[63]  J. Almlöf,et al.  Energy-optimized GTO basis sets for LCAO calculations. A gradient approach , 1986 .