Hydroboration and Hydrosilylation of a MolybdenumNitride Complex Bearing a PNP-Type Pincer Ligand

[1]  Marc D. Walter,et al.  NH3 formation from N2 and H2 mediated by molecular tri-iron complexes , 2020, Nature Chemistry.

[2]  K. Yoshizawa,et al.  Cycling between Molybdenum-Dinitrogen and -Nitride Complexes to Support Reaction Pathway for Catalytic Formation of Ammonia from Dinitrogen. , 2020, Chemistry.

[3]  J. Peters,et al.  Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes. , 2020, Chemical reviews.

[4]  E. Clot,et al.  Stepwise Functionalization of N2 at Mo: Nitrido to Imido to Amido - Factors Favoring Amine Elimination from the Amido Complex , 2020 .

[5]  S. Shiva Kumar,et al.  Hydrogen production by PEM water electrolysis – A review , 2019 .

[6]  K. Nakajima,et al.  Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water , 2019, Nature.

[7]  Laurence R. Doyle,et al.  Bimetallic Cooperative Cleavage of Dinitrogen to Nitride and Tandem Frustrated Lewis Pair Hydrogenation to Ammonia. , 2019, Angewandte Chemie.

[8]  N. Hazari,et al.  Controlling Selectivity in the Hydroboration of Carbon Dioxide to the Formic Acid, Formaldehyde, and Methanol Oxidation Levels , 2018, ACS Catalysis.

[9]  S. Massou,et al.  Room-Temperature Functionalization of N2 to Borylamine at a Molybdenum Complex. , 2018, Angewandte Chemie.

[10]  P. Chirik,et al.  Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration , 2018, Nature Reviews Chemistry.

[11]  F. Tuna,et al.  Catalytic Dinitrogen Reduction to Ammonia at a Triamidoamine–Titanium Complex , 2018, Angewandte Chemie.

[12]  Peter G. Levi,et al.  Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products. , 2018, Environmental science & technology.

[13]  Hartmut Spliethoff,et al.  Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review , 2018 .

[14]  K. Yoshizawa,et al.  Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen–Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions , 2017 .

[15]  S. Ge,et al.  Cobalt-Catalyzed Asymmetric Hydroboration/Cyclization of 1,6-Enynes with Pinacolborane. , 2017, Journal of the American Chemical Society.

[16]  N. Saffon‐Merceron,et al.  Direct Synthesis of Silylamine from N2 and a Silane: Mediated by a Tridentate Phosphine Molybdenum Fragment. , 2016, Angewandte Chemie.

[17]  Rei Kinjo,et al.  Catalytic Hydroboration of Carbonyl Derivatives, Imines, and Carbon Dioxide , 2015 .

[18]  K. Yoshizawa,et al.  Catalytic reduction of dinitrogen to ammonia by use of molybdenum-nitride complexes bearing a tridentate triphosphine as catalysts. , 2015, Journal of the American Chemical Society.

[19]  J. Peters,et al.  Catalytic conversion of nitrogen to ammonia by a molecular Fe model complex , 2013, Nature.

[20]  Huazhang Liu Ammonia Synthesis Catalysts: Innovation and Practice , 2013 .

[21]  G. Nikonov,et al.  Mechanistic aspects of hydrosilylation catalyzed by (ArN=)Mo(H)(Cl)(PMe3)3. , 2012, Inorganic chemistry.

[22]  Y. Miyake,et al.  A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. , 2011, Nature chemistry.

[23]  Justin L. Crossland,et al.  Iron–dinitrogen coordination chemistry: Dinitrogen activation and reactivity , 2010 .

[24]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[25]  J. L. Robbins,et al.  THE SYNTHESES AND ELECTRONIC STRUCTURES OF DECAMETHYLMETALLOCENES , 2010 .

[26]  N. Miyaura Metal-Catalyzed Reactions of Organoboronic Acids and Esters , 2008 .

[27]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[28]  P. Chirik,et al.  Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex , 2004, Nature.

[29]  Richard R. Schrock,et al.  Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center , 2003, Science.

[30]  Iwai,et al.  Bimetallic system for nitrogen fixation: ruthenium-assisted protonation of coordinated N2 on tungsten with H2 , 1998, Science.

[31]  M. Hidai,et al.  Recent Advances in the Chemistry of Dinitrogen Complexes , 1995 .

[32]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[33]  H. Bernhard Schlegel,et al.  Reaction Path Following in Mass-Weighted Internal Coordinates , 1990 .

[34]  Michael Dolg,et al.  Energy‐adjusted ab initio pseudopotentials for the first row transition elements , 1987 .

[35]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[36]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[37]  K. Fukui The path of chemical reactions - the IRC approach , 1981 .

[38]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[39]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[40]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[41]  J. Dilworth,et al.  Recent advances in the chemistry of nitrogen fixation , 1978 .

[42]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[43]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[44]  K. Fukui Formulation of the reaction coordinate , 1970 .

[45]  M. W. Weatherburn Phenol-hypochlorite reaction for determination of ammonia , 1967 .

[46]  G. J. Bullen,et al.  The structure of tri-(1,3,2-benzodioxaborol-2-yl)amine, (C6H4O2B)3N , 1967 .