Theory of electrostatic interactions in macromolecules.

In the past year, substantial progress has been made in the modeling of electrostatic interactions in biomolecules. This review highlights advances in the following areas: first, the efficient computation of long-range electrostatic interactions in detailed molecular simulations; second, the application of the Poisson-Boltzmann electrostatic model in conformational analysis; third, the application of the Poisson-Boltzmann model in quantum chemistry calculations; fourth, the development of atomic parameters; and finally, the modeling of ionization equilibria in proteins.

[1]  B. Honig,et al.  Accurate First Principles Calculation of Molecular Charge Distributions and Solvation Energies from Ab Initio Quantum Mechanics and Continuum Dielectric Theory , 1994 .

[2]  B Honig,et al.  Structural origins of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin. , 1994, Journal of molecular biology.

[3]  Michael A. Bukatin,et al.  Incorporation of reaction field effects into density functional calculations for molecules of arbitrary shape in solution , 1994 .

[4]  D. Walters,et al.  Tautomeric states of the histidine residues of bovine pancreatic ribonuclease A. Application of carbon 13 nuclear magnetic resonance spectroscopy. , 1980, The Journal of biological chemistry.

[5]  D. Roush,et al.  Electrostatic potentials and electrostatic interaction energies of rat cytochrome b5 and a simulated anion-exchange adsorbent surface. , 1994, Biophysical journal.

[6]  T. Darden,et al.  Atomic-level accuracy in simulations of large protein crystals. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[7]  P E Wright,et al.  Electrostatic calculations of side-chain pK(a) values in myoglobin and comparison with NMR data for histidines. , 1993, Biochemistry.

[8]  Malcolm E. Davis,et al.  The inducible multipole solvation model: A new model for solvation effects on solute electrostatics , 1994 .

[9]  Steven W. Rick,et al.  The Aqueous Solvation of Water: A Comparison of Continuum Methods with Molecular Dynamics , 1994 .

[10]  Douglas A. Lauffenburger,et al.  NUMERICAL SOLUTION OF THE NONLINEAR POISSON-BOLTZMANN EQUATION FOR A MEMBRANE-ELECTROLYTE SYSTEM , 1994 .

[11]  K. Sharp,et al.  Macroscopic models of aqueous solutions : biological and chemical applications , 1993 .

[12]  Arieh Warshel,et al.  Microscopic simulations of macroscopic dielectric constants of solvated proteins , 1991 .

[13]  B. Palmer A smooth truncation for polarizable water , 1994 .

[14]  Huan-Xiang Zhou,et al.  Macromolecular electrostatic energy within the nonlinear Poisson–Boltzmann equation , 1994 .

[15]  G. Hummer,et al.  Ion pair potentials-of-mean-force in water , 1994, chem-ph/9404001.

[16]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[17]  J. Warwicker,et al.  The activity of porcine pancreatic phospholipase A2 in 20% alcohol/aqueous solvent, by experiment and electrostatics calculations. , 1994, Journal of molecular biology.

[18]  T. Poulos,et al.  The engineering of binding affinity at metal ion binding sites for the stabilization of proteins: subtilisin as a test case. , 1988, Biochemistry.

[19]  K. Nagayama,et al.  Stabilization of protein crystals by electrostatic interactions as revealed by a numerical approach. , 1993, Journal of molecular biology.

[20]  Improved continuum electrostatic modelling in proteins, with comparison to experiment. , 1994, Journal of molecular biology.

[21]  Peter C. Jurs,et al.  Estimation of pKa for organic oxyacids using calculated atomic charges , 1993, J. Comput. Chem..

[22]  I. Alkorta,et al.  The induced polarization of the water molecule , 1994 .

[23]  C. Lim,et al.  Reducing the error due to the uncertainty in the Born radius in continuum dielectric calculations , 1994 .

[24]  K. Sharp,et al.  Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models , 1994 .

[25]  Dan N. Bernardo,et al.  An Anisotropic Polarizable Water Model: Incorporation of All-Atom Polarizabilities into Molecular Mechanics Force Fields , 1994 .

[26]  A. Warshel,et al.  Calculations of Solvation Free Energies in Chemistry and Biology. , 1995 .

[27]  Jiro Shimada,et al.  Performance of fast multipole methods for calculating electrostatic interactions in biomacromolecular simulations , 1994, J. Comput. Chem..

[28]  W. Olson,et al.  Electrostatic effects in short superhelical DNA. , 1994, Biophysical chemistry.

[29]  M. Gilson,et al.  Small Molecule pKa Prediction with Continuum Electrostatics Calculations , 1994 .

[30]  M. Gilson,et al.  Acetylcholinesterase: diffusional encounter rate constants for dumbbell models of ligand. , 1995, Biophysical journal.

[31]  Barry Honig,et al.  Reevaluation of the Born model of ion hydration , 1985 .

[32]  O. Steinhauser,et al.  Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. , 1992, Biochemistry.

[33]  A. Karshikoff,et al.  Electrostatic properties of two porin channels from Escherichia coli. , 1994, Journal of molecular biology.

[34]  S. Subramaniam,et al.  Treatment of electrostatic effects in proteins: Multigrid‐based newton iterative method for solution of the full nonlinear poisson–boltzmann equation , 1994, Proteins.

[35]  H Oschkinat,et al.  Receptor binding properties of four‐helix‐bundle growth factors deduced from electrostatic analysis , 1994, Protein science : a publication of the Protein Society.

[36]  B. Honig,et al.  Evaluation of the conformational free energies of loops in proteins , 1994, Proteins.

[37]  Yoshio Inoue,et al.  General parameterization of a reaction field theory combined with the boundary element method , 1994, J. Comput. Chem..

[38]  B. Honig,et al.  The electrostatic basis for the interfacial binding of secretory phospholipases A2. , 1994, Biophysical journal.

[39]  P. Kollman,et al.  Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation , 1993 .

[40]  I. Connerton,et al.  An unequivocal example of cysteine proteinase activity affected by multiple electrostatic interactions. , 1994, Protein engineering.

[41]  M. Gilson,et al.  Prediction of pH-dependent properties of proteins. , 1994, Journal of molecular biology.

[42]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[43]  J A McCammon,et al.  Combined conformational search and finite-difference Poisson-Boltzmann approach for flexible docking. Application to an operator mutation in the lambda repressor-operator complex. , 1994, Journal of molecular biology.

[44]  Y Okamoto,et al.  Dependence on the dielectric model and pH in a synthetic helical peptide studied by Monte Carlo simulated annealing , 1994, Biopolymers.

[45]  Thomas Simonson,et al.  Solvation Free Energies Estimated from Macroscopic Continuum Theory: An Accuracy Assessment , 1994 .

[46]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[47]  R. Levy,et al.  Intrinsic pKas of ionizable residues in proteins: An explicit solvent calculation for lysozyme , 1994, Proteins.

[48]  David A. Case,et al.  Incorporating solvation effects into density functional electronic structure calculations , 1994 .

[49]  Arieh Warshel,et al.  Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the POLARIS and ENZYMIX programs , 1993, J. Comput. Chem..

[50]  Sheng-Bai Zhu,et al.  Sensitivity Analysis of a Polarizable Water Model , 1994 .

[51]  B. Honig,et al.  Environmental effects on the protonation states of active site residues in bacteriorhodopsin. , 1994, Biophysical journal.

[52]  M. Gunner,et al.  Electron-transfer kinetics and electrostatic properties of the Rhodobacter sphaeroides reaction center and soluble c-cytochromes. , 1993, Biochemistry.

[53]  R. Abagyan,et al.  Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. , 1994, Journal of molecular biology.

[54]  B. Atanasov,et al.  Spatial optimization of electrostatic interactions between the ionized groups in globular proteins , 1994, Proteins.

[55]  Terry P. Lybrand,et al.  A Comparison of Perturbation Methods and Poisson-Boltzmann Electrostatics Calculations for Estimation of Relative Solvation Free Energies , 1994 .

[56]  B. Tidor,et al.  Do salt bridges stabilize proteins? A continuum electrostatic analysis , 1994, Protein science : a publication of the Protein Society.

[57]  B. Jayaram,et al.  Counterion condensation in DNA systems: The cylindrical Poisson–Boltzmann model revisited , 1994 .

[58]  A. Allerhand,et al.  Titration behavior and tautomeric states of individual histidine residues of myoglobins. Application of natural abundance carbon 13 nuclear magnetic resonance spectroscopy. , 1977, The Journal of biological chemistry.

[59]  J. Tainer,et al.  The role of arginine 143 in the electrostatics and mechanism of Cu, Zn superoxide dismutase: Computational and experimental evaluation by mutational analysis , 1994, Proteins.

[60]  G. Vriend,et al.  The role of electrostatic charge in the membrane insertion of colicin A. Calculation and mutation. , 1994, European journal of biochemistry.

[61]  Bernard R. Brooks,et al.  New spherical‐cutoff methods for long‐range forces in macromolecular simulation , 1994, J. Comput. Chem..

[62]  B Honig,et al.  Salt effects on ligand-DNA binding. Minor groove binding antibiotics. , 1994, Journal of molecular biology.

[63]  Effective water model for Monte Carlo simulations of proteins , 1995, Biopolymers.

[64]  G. Lamm,et al.  Monte Carlo and Poisson–Boltzmann calculations of the fraction of counterions bound to DNA , 1994, Biopolymers.

[65]  T. M. Parker,et al.  Nanometric design of extraordinary hydrophobic‐induced pKa shifts for aspartic acid: Relevance to protein mechanisms , 1994, Biopolymers.

[66]  Bhyravabhotla Jayaram,et al.  ELECTROSTATIC INTERACTIONS IN ALIPHATIC DICARBOXYLIC ACIDS : A COMPUTATIONAL ROUTE TO THE DETERMINATION OF PKA SHIFTS , 1994 .

[67]  H. Schreiber,et al.  Molecular dynamics studies of solvated polypeptides: Why the cut-off scheme does not work , 1992 .

[68]  M. Tanokura 1H-NMR study on the tautomerism of the imidazole ring of histidine residues. II. Microenvironments of histidine-12 and histidine-119 of bovine pancreatic ribonuclease A. , 1983, Biochimica et biophysica acta.

[69]  A. Rashin Electrostatics of ion-ion interactions in solution , 1989 .

[71]  B. Honig,et al.  Calculation of the total electrostatic energy of a macromolecular system: Solvation energies, binding energies, and conformational analysis , 1988, Proteins.

[72]  Barry Honig,et al.  Salt Effects on Protein-DNA Interactions: The λcI Repressor and EcoRI Endonuclease , 1994 .

[73]  Molecular mechanics and electrostatic effects. , 1994, Biophysical chemistry.

[74]  James Andrew McCammon,et al.  Molecular dynamics simulation with a continuum electrostatic model of the solvent , 1995, J. Comput. Chem..

[75]  Wilfred F. van Gunsteren,et al.  A Comparison of Particle-Particle, Particle-Mesh and Ewald Methods for Calculating Electrostatic Interactions in Periodic Molecular Systems , 1994 .

[76]  P. Tavan,et al.  A structure adapted multipole method for electrostatic interactions in protein dynamics , 1994 .

[77]  Anders Wallqvist,et al.  Effective potentials for liquid water using polarizable and nonpolarizable models , 1993 .

[78]  Minoru Saito,et al.  Molecular dynamics simulations of proteins in solution: Artifacts caused by the cutoff approximation , 1994 .

[79]  Wilfred F. van Gunsteren,et al.  Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications , 1989 .

[80]  H. Scheraga,et al.  Theoretical Modeling of Electrostatic Effects of Titratable Side-Chain Groups on Protein Conformation in a Polar Ionic Solution. 1. Potential of Mean Force between Charged Lysine Residues and Titration of Poly(L-lysine) in 95% Methanol Solution , 1994 .

[81]  Huan‐Xiang Zhou Effects of Mutations and Complex Formation on the Reduction Potentials of Cytochrome c and Cytochrome c Peroxidase , 1994 .

[82]  M. Gilson,et al.  Acetylcholinesterase: Effects of Ionic Strength and Dimerization on the Rate Constants , 1994 .

[83]  Giancarlo Ruocco,et al.  Computer simulation of polarizable fluids: a consistent and fast way for dealing with polarizability and hyperpolarizability , 1994 .