Automatic De-identification of Medical Texts in Spanish: the MEDDOCAN Track, Corpus, Guidelines, Methods and Evaluation of Results
暂无分享,去创建一个
Aitor Gonzalez-Agirre | Montserrat Marimon | Martin Krallinger | Heidy Rodriguez | Marta Villegas | Ander Intxaurrondo | Jose Lopez Martin | Martin Krallinger | A. Gonzalez-Agirre | Marta Villegas | Ander Intxaurrondo | M. Marimon | J. L. Martin | Heidy Rodriguez | Aitor Gonzalez-Agirre
[1] Eckhard Bick,et al. Automatic Anonymisation of a new Portuguese-English Parallel Corpus in the Legal-Financial Domain , 2015 .
[2] Cyril Grouin,et al. De-identification of clinical notes in French: towards a protocol for reference corpus development , 2014, J. Biomed. Informatics.
[3] Kostas Pantazos,et al. Preserving medical correctness, readability and consistency in de-identified health records , 2017, Health Informatics J..
[4] Montserrat Marimon,et al. The MeSpEN Resource for English-Spanish Medical Machine Translation and Terminologies : Census of Parallel Corpora , Glossaries and Term Translations , 2018 .
[5] Montserrat Marimon,et al. PharmacoNER Tagger: a deep learning-based tool for automatically finding chemicals and drugs in Spanish medical texts , 2019, Genomics & informatics.
[6] Sara Hajian,et al. A Case Study of Anonymization of Medical Surveys , 2017, DH.
[7] Özlem Uzuner,et al. Automated systems for the de-identification of longitudinal clinical narratives: Overview of 2014 i2b2/UTHealth shared task Track 1 , 2015, J. Biomed. Informatics.
[8] Julia Prentice,et al. Learner Corpus Anonymization in the Age of GDPR: Insights from the Creation of a Learner Corpus of Swedish , 2018 .
[9] Martin Krallinger,et al. Construcción de recursos terminológicos médicos para el espa˜nol: el sistema de extracción de términos CUTEXT y los repositorios de términos biomédicos , 2018, Proces. del Leng. Natural.
[10] Kim Luyckx,et al. De-Identification of Clinical Free Text in Dutch with Limited Training Data: A Case Study , 2013, RANLP.
[11] José Luis Fernández Alemán,et al. Security and privacy in electronic health records: A systematic literature review , 2013, J. Biomed. Informatics.
[12] Montserrat Marimon,et al. Finding Mentions of Abbreviations and Their Definitions in Spanish Clinical Cases: The BARR2 Shared Task Evaluation Results , 2018, IberEval@SEPLN.
[13] Alfonso Valencia,et al. The Biomedical Abbreviation Recognition and Resolution (BARR) Track: Benchmarking, Evaluation and Importance of Abbreviation Recognition Systems Applied to Spanish Biomedical Abstracts , 2017, IberEval@SEPLN.
[14] Laura García Sardiña. Automating the anonymisation of textual corpora , 2018 .
[15] Peter Szolovits,et al. Evaluating the state-of-the-art in automatic de-identification. , 2007, Journal of the American Medical Informatics Association : JAMIA.
[16] Alfonso Valencia,et al. Next generation community assessment of biomedical entity recognition web servers: metrics, performance, interoperability aspects of BeCalm , 2019, Journal of Cheminformatics.
[17] Hercules Dalianis,et al. Pseudonymisation of Personal Names and other PHIs in an Annotated Clinical Swedish Corpus , 2012 .
[18] Amund Tveita,et al. Anonymization of General Practioner Medical Records , 2004 .
[19] Christian Lovis,et al. De-identification of French medical narratives , 2018, Swiss Medical Informatics.
[20] Jorge Baptista,et al. Automated anonymization of text documents , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).
[21] Jorge Turmo Borras,et al. Building a Spanish/Catalan health records corpus with very sparse protected information labelled , 2018 .