MAMMOTh: a new database for curated MAthematical Models of bioMOlecular sysTems

Living systems have a complex hierarchical organization that can be viewed as a set of dynamically interacting subsystems. Thus, to simulate the internal nature and dynamics of the whole biological system we should use the iterative way for a model reconstruction, which is a consistent composition and combination of its elementary subsystems. In accordance with this bottom-up approach, we have developed MAMMOTh (MAthematical Models of bioMOlecular sysTems) database that allows integrating manually curated mathematical models of biomolecular systems, which are fit to the experimental data. The database entries are organized as building blocks in a way that the model parts can be used in different combinations to describe systems with higher organizational level (metabolic pathways and/or transcription regulatory networks). The database supports export of single model or their combinations in SBML or Mathematica standards. The database currently contains more than 100 mathematical models for Escherichia coli elementary subsystems (enzymatic reactions and gene expression regulatory processes) that can be combined in at least 5100 complex/sophisticated models concerning such biological processes as: de novo nucleotide biosynthesis, aerobic/anaerobic respiration, and nitrate/nitrite utilization in E. coli. All current models are functionally interconnected and sufficiently complement public model resources. Database URL: http://mammoth.biomodelsgroup.ru

[1]  Guido Sanguinetti,et al.  Hybrid regulatory models: a statistically tractable approach to model regulatory network dynamics , 2013, Bioinform..

[2]  Andreas Zell,et al.  SBMLsqueezer: A CellDesigner plug-in to generate kinetic rate equations for biochemical networks , 2008, BMC Systems Biology.

[3]  Bin Hu,et al.  GetBonNie for building, analyzing and sharing rule-based models , 2009, Bioinform..

[4]  Anders Lansner,et al.  A model of phosphofructokinase and glycolytic oscillations in the pancreatic beta-cell. , 2003, Biophysical journal.

[5]  Rainer Breitling,et al.  What is Systems Biology? , 2010, Front. Physiology.

[6]  Edda Klipp,et al.  Systems Biology , 1994 .

[7]  L. G. Davis,et al.  Basic methods in molecular biology , 1986 .

[8]  Kazuhiro Maeda,et al.  BioFNet: biological functional network database for analysis and synthesis of biological systems , 2014, Briefings Bioinform..

[9]  Andreas Zell,et al.  Path2Models: large-scale generation of computational models from biochemical pathway maps , 2013, BMC Systems Biology.

[10]  Eric Mjolsness,et al.  A plausible mechanism for auxin patterning along the developing root , 2010, BMC Systems Biology.

[11]  Marc A. Martí-Renom,et al.  MODBASE: a database of annotated comparative protein structure models and associated resources , 2005, Nucleic Acids Res..

[12]  Jacky L. Snoep,et al.  BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems , 2005, Nucleic Acids Res..

[13]  Attila Csikász-Nagy,et al.  Computational systems biology of the cell cycle , 2009, Briefings Bioinform..

[14]  Vladimir Batagelj,et al.  Exploratory social network analysis with Pajek. - 2nd ed. , 2011 .

[15]  Gennadii Demidenko,et al.  On Differential Equations with Retarded Argument , 2005 .

[16]  U. Alon Biological Networks: The Tinkerer as an Engineer , 2003, Science.

[17]  A Sorribas,et al.  Mathematical models of purine metabolism in man. , 1998, Mathematical biosciences.

[18]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[19]  Carole Goble,et al.  The evolution of standards and data management practices in systems biology , 2015, Molecular systems biology.

[20]  N. Kolchanov,et al.  Metabolic engineering in silico , 2010, Applied Biochemistry and Microbiology.

[21]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[22]  B. Wright,et al.  Cellular concentrations of enzymes and their substrates. , 1990, Journal of theoretical biology.

[24]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[25]  Carlos F. Lopez,et al.  Programming biological models in Python using PySB , 2013, Molecular systems biology.

[26]  T. M. Khlebodarova,et al.  On the control mechanisms of the nitrite level in Escherichia coli cells: the mathematical model , 2016, BMC Microbiology.

[27]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[28]  Judith B. Zaugg,et al.  Bacterial adaptation through distributed sensing of metabolic fluxes , 2010, Molecular systems biology.

[29]  Andreas Dräger,et al.  CySBML: a Cytoscape plugin for SBML , 2012, Bioinform..

[30]  Andreas Zell,et al.  SBMLsqueezer 2: context-sensitive creation of kinetic equations in biochemical networks , 2015, BMC Systems Biology.

[31]  L. Tsimring,et al.  A synchronized quorum of genetic clocks , 2009, Nature.

[32]  Sven Sahle,et al.  Applications and trends in systems biology in biochemistry , 2011, The FEBS journal.

[33]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[34]  Alexander V. Ratushny,et al.  Systems cell biology , 2014, The Journal of cell biology.

[35]  Renate Kania,et al.  SABIO-RK: Integration and Curation of Reaction Kinetics Data , 2006, DILS.

[36]  Hirotada Mori,et al.  From the sequence to cell modeling: comprehensive functional genomics in Escherichia coli. , 2004, Journal of biochemistry and molecular biology.

[37]  Pedro Mayorga,et al.  Foundations for Modeling the Dynamics of gene regulatory Networks: a Multilevel-Perspective Review , 2014, J. Bioinform. Comput. Biol..

[38]  William W. Chen,et al.  Classic and contemporary approaches to modeling biochemical reactions. , 2010, Genes & development.

[39]  P. Mendes,et al.  Large-Scale Metabolic Models: From Reconstruction to Differential Equations , 2013 .

[40]  N. Kikuchi,et al.  CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks , 2008, Proceedings of the IEEE.

[41]  O. A. Podkolodnaya,et al.  Generalized Chemokinetic Method for Gene Network Simulation , 2001, Molecular Biology.

[42]  F. Bruggeman,et al.  The nature of systems biology. , 2007, Trends in microbiology.

[43]  Sergey A. Lashin,et al.  Comparative Modeling of Coevolution in Communities of Unicellular Organisms: Adaptability and Biodiversity , 2010, J. Bioinform. Comput. Biol..

[44]  Bruce E. Shapiro,et al.  Pycellerator: an arrow-based reaction-like modelling language for biological simulations , 2016, Bioinform..

[45]  Philip Miller,et al.  BiGG Models: A platform for integrating, standardizing and sharing genome-scale models , 2015, Nucleic Acids Res..

[46]  Igor Goryanin,et al.  Kinetic modelling in systems biology , 2008 .

[47]  Nedosekina E.A MATHEMATICAL MODELING OF REGULATION OF ESCHERICHIA COLI PURINE BIOSYNTHESIS PATHWAY ENZYMATIC REACTIONS , 2008 .

[48]  James R Faeder,et al.  Rule-based modeling of biochemical systems with BioNetGen. , 2009, Methods in molecular biology.

[49]  И.Р. Акбердин,et al.  In Silico Cell: Challenges and Perspectives , 2013 .

[50]  Peter J. Hunter,et al.  The CellML Model Repository , 2008, Bioinform..

[52]  Wendell A Lim,et al.  Design principles of regulatory networks: searching for the molecular algorithms of the cell. , 2013, Molecular cell.

[53]  Olaf Wolkenhauer,et al.  Combining computational models, semantic annotations and simulation experiments in a graph database , 2015, Database J. Biol. Databases Curation.

[54]  Ina Koch,et al.  Genome Scale Modeling in Systems Biology: Algorithms and Resources , 2014, Current genomics.

[55]  Ravi Iyengar,et al.  Computational approaches for modeling regulatory cellular networks. , 2004, Trends in cell biology.

[56]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[57]  Nevan J. Krogan,et al.  From systems to structure: bridging networks and mechanism. , 2013, Molecular cell.

[58]  Jung-Hsien Chiang,et al.  Molecular mechanisms of system responses to novel stimuli are predictable from public data , 2013, Nucleic acids research.

[59]  Jacky L. Snoep,et al.  Web-based kinetic modelling using JWS Online , 2004, Bioinform..

[60]  V. A. Likhoshvai,et al.  A mathematical model for the adenylosuccinate synthetase reaction involved in purine biosynthesis , 2007, Theoretical Biology and Medical Modelling.

[61]  Yangyang Zhao,et al.  BioModels: ten-year anniversary , 2014, Nucleic Acids Res..

[62]  Olaf Wolkenhauer,et al.  An algorithm to detect and communicate the differences in computational models describing biological systems , 2015, Bioinform..

[63]  M. Stumpf,et al.  Systems biology (un)certainties , 2015, Science.

[64]  B. Palsson,et al.  The evolution of molecular biology into systems biology , 2004, Nature Biotechnology.

[65]  John M. Hancock,et al.  A kinetic core model of the glucose-stimulated insulin secretion network of pancreatic β cells , 2007, Mammalian Genome.

[66]  Chris T. A. Evelo,et al.  The systems biology format converter , 2016, BMC Bioinformatics.

[67]  C. Chassagnole,et al.  Dynamic modeling of the central carbon metabolism of Escherichia coli. , 2002, Biotechnology and bioengineering.

[69]  Nicholas J. Guido,et al.  A bottom-up approach to gene regulation , 2006, Nature.

[70]  T. Ferenci,et al.  The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase. , 1997, Microbiology.

[71]  J. Rabinowitz,et al.  Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli , 2009, Nature chemical biology.

[72]  Vitali A. Likhoshvai,et al.  Generalized Hill Function Method for Modeling Molecular Processes , 2007, J. Bioinform. Comput. Biol..

[73]  Vladimir Batagelj,et al.  Exploratory Social Network Analysis with Pajek , 2005 .