Adaptive Controller for Single-Link Flexible Manipulators Based on Algebraic Identification and Generalized Proportional Integral Control

In this paper, we propose a fast online closed-loop identification method combined with an output-feedback controller of the generalized proportional integral (GPI) type for the control of an uncertain flexible robotic arm with unknown mass at the tip, including a Coulomb friction term in the motor dynamics. A fast nonasymptotic algebraic identification method developed in continuous time is used to identify the unknown system parameter and update the designed certainty equivalence GPI controller. In order to verify this method, several informative simulations and experiments are shown.

[1]  Michel Fliess,et al.  Analyse non standard du bruit , 2006, ArXiv.

[2]  H. Sira-Ramírez,et al.  A fast on-line frequency estimator of lightly damped vibrations in flexible structures , 2007 .

[3]  Torsten Söderström,et al.  Identification of continuous-time AR processes from unevenly sampled data , 2002, Autom..

[4]  M. Fliess,et al.  On non-asymptotic observation of nonlinear systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[5]  Kuldip S. Rattan,et al.  Modeling and Control of Single- Link Flexible Arms With Lumped Masses , 1992 .

[6]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.

[7]  Minyue Fu,et al.  Modeling continuous-time processes via input-to-state filters , 2006, Autom..

[8]  Yon-Ping Chen,et al.  Regulation and Vibration Control of an FEM-Based Single- Link Flexible Arm Using Sliding-Mode Theory , 2001 .

[9]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[10]  Vicente Feliu,et al.  Strain gauge based control of single-link flexible very lightweight robots robust to payload changes , 2005 .

[11]  Peter Young,et al.  Parameter estimation for continuous-time models - A survey , 1979, Autom..

[12]  N. Sinha,et al.  Identification of Continuous-Time Systems: Methodology and Computer Implementation , 1991 .

[13]  Khashayar Khorasani,et al.  A neural-network-based controller for a single-link flexible manipulator using the inverse dynamics approach , 2001, IEEE Trans. Ind. Electron..

[14]  Jaehwan Kim,et al.  Position control of a flexible gantry robot arm using smart material actuators , 1999 .

[15]  Jonathan Becedas,et al.  Fast identification method to control a flexible manipulator with parameter uncertainties , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[16]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[17]  Eduardo Bayo,et al.  A finite-element approach to control the end-point motion of a single-link flexible robot , 1987, J. Field Robotics.

[18]  Seung-Bok Choi,et al.  Position control of a flexible gantry robot arm using smart material actuators , 1999, J. Field Robotics.

[19]  Torsten Söderström,et al.  Performance evaluation of methods for identifying continuous-time autoregressive processes , 2000, Autom..

[20]  H. Benjamin Brown,et al.  Control of flexible arms with friction in the joints , 1993, IEEE Trans. Robotics Autom..

[21]  Christopher J. Damaren,et al.  The control of flexible-link robots manipulating large payloads: Theory and experiments , 2000, J. Field Robotics.

[22]  Christopher J. Damaren,et al.  Adaptive control of flexible manipulators carrying large uncertain payloads , 1996, J. Field Robotics.

[23]  Fumio Hara,et al.  H/sub infinity / control of a flexible robotic arm (effect on parameter uncertainties on stability) , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[24]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[25]  M. Fliess,et al.  Questioning some paradigms of signal processing via concrete examples , 2003 .

[26]  Dong Sun,et al.  Hybrid control of a rotational flexible beam using enhanced PD feedback with a nonlinear differentiator and PZT actuators , 2005 .

[27]  Giovanni Ulivi,et al.  Exact modeling of the flexible slewing link , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[28]  Zhikun Hou,et al.  A new approach to suppress spillover instability in structural vibration control , 2004 .

[29]  M. Fliess,et al.  An algebraic framework for linear identification , 2003 .

[30]  Peter Eberhard,et al.  DYNAMIC ANALYSIS OF FLEXIBLE MANIPULATORS, A LITERATURE REVIEW , 2006 .

[31]  Rakosh Das Begamudre Electro-mechanical energy conversion with dynamics of machines , 1988 .

[32]  H. Sira-Ramirez,et al.  On the output feedback control of a synchronous generator , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[33]  Michel Verhaegen,et al.  State-space system identification of robot manipulator dynamics , 1997 .

[34]  Prabhakar Kudva,et al.  Load-adaptive control of a single-link flexible manipulator , 1992, IEEE Trans. Syst. Man Cybern..

[35]  Vicente Feliú Batlle,et al.  Inverse dynamics based control system for a three-degree-of-freedom flexible arm , 2003, IEEE Trans. Robotics Autom..

[36]  S.C.P. Gomes,et al.  Active control to flexible manipulators , 2006, IEEE/ASME Transactions on Mechatronics.

[37]  M. Balas Active control of flexible systems , 1978 .

[38]  David Brie,et al.  Regularization aspects in continuous-time model identification , 2005, Autom..

[39]  R. H. Cannon,et al.  Initial Experiments on the End-Point Control of a Flexible One-Link Robot , 1984 .

[40]  Stephen Yurkovich,et al.  Fuzzy learning control for a flexible-link robot , 1995, IEEE Trans. Fuzzy Syst..

[41]  Vicente Feliú Batlle,et al.  An algebraic frequency estimator for a biased and noisy sinusoidal signal , 2007, Signal Process..

[42]  J. Dias Rodrigues,et al.  Active vibration control of smart piezoelectric beams: Comparison of classical and optimal feedback control strategies , 2006 .

[43]  J. Mikusiński Operational Calculus , 1959 .

[44]  Jinjun Shan,et al.  Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF) , 2005 .

[45]  H. Unbehauen,et al.  Identification of continuous systems , 1987 .

[46]  A. Akay,et al.  Vibration reduction of a flexible arm by time-optimal open-loop control , 1991 .

[47]  Heinz Unbehauen,et al.  Continuous-time approaches to system identification - A survey , 1990, Autom..

[48]  V. Feliu Robots Flexibles: Hacia una Generación de Robots con Nuevas Prestaciones , 2009 .

[49]  İlyas Eker Open-loop and closed-loop experimental on-line identification of a three-mass electromechanical system , 2004 .