Analysis of spatial correlation in predictive models of forest variables that use LiDAR auxiliary information

Accounting for spatial correlation of LiDAR model errors can improve the precision of model-based estimators. To estimate spatial correlation, sample designs that provide close observations are needed, but their implementation might be prohibitively expensive. To quantify the gains obtained by accounting for the spatial correlation of model errors, we examined (i) the spatial correlation patterns of residuals from LiDAR linear models developed to predict volume, total and stem biomass per hectare, quadratic mean diameter (QMD), basal area, mean and dominant height, and stand density and (ii) the impact of field plot size on the spatial correlation patterns in a standwise managed Mediterranean forest in central Spain. For all variables, the correlation range of model residuals consistently increased with plot radius and was always below 60 m except for stand density, where it reached 85 m. Except for QMD, correlation ranges of model residuals were between 1.06 and 8.16 times shorter than those observed for...

[1]  Sören Holm,et al.  On the potential of Kriging for forest management planning , 1998 .

[2]  S. Magnussen,et al.  Model-based mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories , 2009 .

[3]  R. Valbuena,et al.  Remote sensing estimates and measures of uncertainty for forest variables at different aggregation levels , 2016 .

[4]  Jorge Mateu,et al.  Spatial prediction and kriging , 2015 .

[5]  Dale L. Zimmerman,et al.  Optimal network design for spatial prediction, covariance parameter estimation, and empirical prediction , 2006 .

[6]  Alan J. Miller,et al.  leaps: Regression Subset Selection. , 2004 .

[7]  S. Magnussen,et al.  Alternative mean-squared error estimators for synthetic estimators of domain means , 2016 .

[8]  V. Carey,et al.  Mixed-Effects Models in S and S-Plus , 2001 .

[9]  J. Heikkinen,et al.  Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery , 2007 .

[10]  William A. Bechtold,et al.  The enhanced forest inventory and analysis program - national sampling design and estimation procedures , 2005 .

[11]  Guangqing Chi,et al.  Applied Spatial Data Analysis with R , 2015 .

[12]  Hailemariam Temesgen,et al.  A Comparison of the Spatial Linear Model to Nearest Neighbor (k-NN) Methods for Forestry Applications , 2013, PloS one.

[13]  Hailemariam Temesgen,et al.  Relating Forest Attributes with Area- and Tree-Based Light Detection and Ranging Metrics for Western Oregon , 2010 .

[14]  Robert J. McGaughey,et al.  Mixed-effects models for estimating stand volume by means of small footprint airborne laser scanner data. , 2008 .

[15]  R. Ruiz-Peinado,et al.  Producción de biomasa y fijación de CO2 por los bosques españoles , 2011 .

[16]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[17]  D. Mandallaz,et al.  Scale effects in survey estimates of proportions and quantiles of per unit area attributes , 2016 .

[18]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[19]  A. Gonzalez,et al.  REVIEW OF MANAGEMENT AND ADMINISTRATION IN THE FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO) , 2003 .

[20]  E. Næsset,et al.  Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve , 2002 .

[21]  Txomin Hermosilla,et al.  Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates , 2014 .

[22]  R. McRoberts A model-based approach to estimating forest area , 2006 .

[23]  Steen Magnussen,et al.  Recovering Tree Heights from Airborne Laser Scanner Data , 1999, Forest Science.

[24]  Andrew O. Finley,et al.  Dynamic spatial regression models for space‐varying forest stand tables , 2014, 1411.0599.

[25]  Nikolay S. Strigul,et al.  3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles , 2015, PloS one.

[26]  M. Vastaranta,et al.  Terrestrial laser scanning in forest inventories , 2016 .

[27]  K. Lim,et al.  Operational implementation of a LiDAR inventory in Boreal Ontario , 2011 .

[28]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[29]  Thomas D. Sandry,et al.  Introductory Statistics With R , 2003, Technometrics.

[30]  J. Hoef,et al.  Evaluation of the spatial linear model, random forest and gradient nearest-neighbour methods for imputing potential productivity and biomass of the Pacific Northwest forests , 2015 .

[31]  E. Næsset,et al.  Comparison of four types of 3D data for timber volume estimation , 2014 .

[32]  E. Næsset,et al.  Assessing effects of positioning errors and sample plot size on biophysical stand properties derived from airborne laser scanner data. , 2009 .

[33]  E. Næsset Determination of mean tree height of forest stands using airborne laser scanner data , 1997 .

[34]  Jean-Paul Chilbs,et al.  Geostatistics , 2000, Technometrics.

[35]  R. McRoberts,et al.  Empirical coverage of model-based variance estimators for remote sensing assisted estimation of stand-level timber volume , 2016, Remote sensing of environment.

[36]  E. Næsset,et al.  Estimating tree heights and number of stems in young forest stands using airborne laser scanner data , 2001 .

[37]  Eduardo González-Ferreiro,et al.  Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities , 2012 .