Crystal engineering of coordination polymers using 4,4'-bipyridine as a bond between transition metal atoms.

Coordination polymers have attracted an enormous interest among chemists due to their novel physical and chemical properties. This review describes the role of 4,4'-bipyridine in discovering various coordination polymers with novel topologies that range from one-dimensional to three dimensional. The geometries of coordination polymers of bipy include linear, zigzag, four-fold helices, molecular antenna, ladder, railroad, double, triple and quadruple chains, bilayer, square and rectangular grid, honeycomb layers, Lincoln Logs, 3D frames, diamondoid, 4(2) x 8(2) and cubic networks.

[1]  Jing Li,et al.  Two-dimensional coordination polymers with one-dimensional magnetic chains: Hydrothermal synthesis, crystal structure, and magnetic and thermal properties of∞2 [MCl2(4,4′-bipyridine)] (M = Fe, Co, Ni, Co/Ni) , 1999 .

[2]  G. Enright,et al.  Modified Metal Dibenzoylmethanates for Soft Supramolecular Materials: Extension to Oligomeric and Polymeric Host Receptors with Nanosized Void Spaces† , 2003 .

[3]  Giannis S. Papaefstathiou,et al.  Inverted metal-organic frameworks: solid-state hosts with modular functionality , 2003 .

[4]  Xiao‐Ming Chen,et al.  Synthesis and structures of two-dimensional coordination polymers constructed by metal salts and 4,4′-bipyridine , 2000 .

[5]  Gautam R. Desiraju,et al.  Crystal engineering : the design of organic solids , 1989 .

[6]  Robin D. Rogers,et al.  Supramolecular Isomerism in Coordination Polymers: Conformational Freedom of Ligands in [Co(NO3)2(1,2‐bis(4‐pyridyl)ethane)1.5]n , 1997 .

[7]  A. Jacobson,et al.  A Polymeric Structure Containing Cu 2 Cl 2 Units Bridged by 4,4‘-Bipyridine: (PPh 3 ) 2 Cu 2 (μ-Cl) 2 (μ-4,4‘-bipyridine) , 1997 .

[8]  S. Mann Dalton perspectives. Biomineralization: the hard part of bioinorganic chemistry! , 1993 .

[9]  Israel Goldberg,et al.  Crystal engineering of porphyrin framework solids. , 2005, Chemical communications.

[10]  Michael J. Zaworotko,et al.  Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? , 2004 .

[11]  F. Herbstein Correction of the space group of [Ni(bipy)(2)(ONO(2))(2)] x 2(pyrene). , 2001, Acta crystallographica. Section B, Structural science.

[12]  Jing Li,et al.  Cu-X-bpy (X = Cl, Br; bpy = 4,4'-bipyridine) Coordination Polymers: The Stoichiometric Control and Structural Relations of [Cu(2)X(2)(bpy)] and [CuBr(bpy)]. , 1999, Inorganic chemistry.

[13]  Robert W. Gable,et al.  A new type of interpenetration involving enmeshed independent square grid sheets. The structure of diaquabis-(4,4′-bipyridine)zinc hexafluorosilicate , 1990 .

[14]  A. Fletcher,et al.  Adsorption of gases and vapors on nanoporous Ni2(4,4'-Bipyridine)3(NO3)4 metal-organic framework materials templated with methanol and ethanol: structural effects in adsorption kinetics. , 2004, Journal of the American Chemical Society.

[15]  Guangming Li,et al.  Mutually Interpenetrating Sheets and Channels in the Extended Structure of [Cu(4,4′‐bpy)Cl] , 1995 .

[16]  O. Kahn,et al.  Magnetic anisotropy in cyano-bridged bimetallic ferromagnets synthesized from the [Mo(CN)7]4– precursor , 1999 .

[17]  Stuart R. Batten,et al.  Glorious uncertainty—challenges for network design , 2005 .

[18]  David J. Williams,et al.  A New Type of Metal-Organic Large-Pore Zeotype , 1999 .

[19]  C. Ratcliffe,et al.  Sorption of Xenon, Methane, and Organic Solvents by a Flexible Microporous Polymer Catena-Bis(Dibenzoylmethanato)-(4,4‘-bipyridyl)nickel(II) , 2003 .

[20]  M. Yamashita,et al.  Framework engineering by anions and porous functionalities of Cu(II)/4,4'-bpy coordination polymers. , 2002, Journal of the American Chemical Society.

[21]  V. Fedin,et al.  Synthesis and crystal structure of a new metal–organic coordination polymer [Fe(4,4′-bpy)3(H2O)2](PF6)2·2(4,4′-bpy)·5 H2O with nanosized channels clathrate large organic molecules , 2005 .

[22]  A. J. Blake,et al.  Supramolecular interactions in 4,4′-Bipyridine cobalt(II) nitrate networks , 2002 .

[23]  K. Biradha,et al.  Formation of Two, One, and Zero-Dimensional Coordination Assemblies from Cd(II) Ion and 4,4′-Bipyridine , 2000 .

[24]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[25]  S. Tree Preparative inorganic reactions. Volume 1 (Jolly, William M., ed.) , 1965 .

[26]  A. J. Blake,et al.  Copper(I) iodide coordination networks–controlling the placement of (CuI)∞ ladders and chains within two-dimensional sheets , 1999 .

[27]  M. Rosseinsky,et al.  Recent developments in metal–organic framework chemistry: design, discovery, permanent porosity and flexibility ☆ , 2004 .

[28]  K. Biradha,et al.  Helical Coordination Polymers with Large Chiral Cavities. , 1999, Angewandte Chemie.

[29]  N. Masciocchi,et al.  Ab-initio X-ray powder diffraction structural characterization of co-ordination compounds: polymeric [{MX2(bipy)}n] complexes (M = Ni or Cu; X = Cl or Br; bipy = 4,4′-bipyridyl) , 1996 .

[30]  L. Jianmin,et al.  Spectral and structural properties of 2D network complex [Ni(4,4′–bipyridine)2(NCS)2]n , 2000 .

[31]  Lee Brammer,et al.  Developments in inorganic crystal engineering. , 2004, Chemical Society reviews.

[32]  S. Kitagawa,et al.  Pore surface engineering of microporous coordination polymers. , 2006, Chemical communications.

[33]  W. Massa,et al.  4,4′-bipyMnF3, a modulated hybrid layer structure with 1D magnetic properties , 2002 .

[34]  X. You,et al.  Crystal structure and spectroscopic and magnetic properties of a novel cis-4,4′-bipyridine polymeric complex of NiII: cis-catena-(μ-4,4′-bipy) [Ni(Et-XA)2]·0.5EtOH·CHCl3 , 1997 .

[35]  Leonard J Barbour,et al.  Crystal porosity and the burden of proof. , 2006, Chemical communications.

[36]  Hegen Zheng,et al.  Synthesis, Structural Characterization of a Novel 4,4′‐Bipyridyl Based HgI2Adduct , 2003 .

[37]  K. Biradha,et al.  Selective formation of rectangular grid coordination polymers with grid dimensions 10 × 15, 10 × 20 and 15 × 20 Å , 2001 .

[38]  J. Real,et al.  Weak Antiferromagnetism in Carboxylato Copper(II) Complexes of Bipyridines , 2002 .

[39]  Kumar Biradha,et al.  Novel Nanoporous Coordination Polymer Sustained by Self-Assembly of T-Shaped Moieties , 1999 .

[40]  Hans-Conrad zur Loye,et al.  Noninterpenetrating Square-Grid Coordination Polymers With Dimensions of 25×25 Å2 Prepared by UsingN,N′-Type Ligands: The First Chiral Square-Grid Coordination Polymer , 2002 .

[41]  S. Obrai,et al.  Synthesis and characterisation of 4,4′-bipyridine bridged supramolecules derived from [(N–N)Cu(H2O)4]X2, [(N–N)=diamine] and linear 4,4′-bipyridine. X-ray crystal structures of [(2,2′-bpy)Cu(4,4′-bpy)(OClO3)2]n and [(1,10-phen)Cu[(4,4′-bpy)(OClO3)]n(ClO4)n·nH2O , 2001 .

[42]  Xiao‐Ming Chen,et al.  A photoluminescent polymeric chain complex: synthesis and structure of [(PPh3)2Cu2(μ-I)2(μ-4,4′-bpy)]n , 2003 .

[43]  Cameron J Kepert,et al.  Advanced functional properties in nanoporous coordination framework materials. , 2006, Chemical communications.

[44]  S. Mitra,et al.  Synthesis, characterization and structural studies of mono- and polynuclear complexes of zinc(II) with 1,10-phenanthroline, 2,2′-bipyridine and 4,4′-bipyridine , 1997 .

[45]  J. Dunitz Are crystal structures predictable? , 2003, Chemical communications.

[46]  D. Proserpio,et al.  Extended networks via hydrogen bond cross-linkages of [M(bipy)](M = Zn2+ or Fe2+;bipy = 4,4′-bipyridyl) linear co-ordination polymers , 1997 .

[47]  Y. Aoyama Functional Organic Zeolite Analogues , 1999 .

[48]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[49]  K. Biradha,et al.  Interpenetrating covalent and noncovalent nets in the crystal structures of [M(4,4′-bipyridine)2(NO3)2]·3C10H8 (M = Co, Ni) , 1999 .

[50]  A. Katz,et al.  Bipyridine: the most widely used ligand. A review of molecules comprising at least two 2,2'-bipyridine units. , 2000, Chemical reviews.

[51]  P. Kruger,et al.  Synthesis and structural characterisation of two coordination polymers (molecular ladders) incorporating [M(OAc)2]2 secondary building units and 4,4′-bipyridine [M = Cu(II), Zn(II)] , 2003 .

[52]  C. Rao,et al.  Metal carboxylates with open architectures. , 2004, Angewandte Chemie.

[53]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[54]  M. Zaworotko,et al.  POROUS SOLIDS BY DESIGN : ZN(4,4'-BPY)2(SIF6)N.XDMF, A SINGLE FRAMEWORK OCTAHEDRAL COORDINATION POLYMER WITH LARGE SQUARE CHANNELS , 1995 .

[55]  Seik Weng Ng,et al.  Poly[[diaquatris(μ 2 -4,4′-bipyridine-κ 2 N , N ′)tetrakis(phenylacetato-κ O )dinickel(II)] dihydrate] , 2005 .

[56]  Hailian Li,et al.  T-SHAPED MOLECULAR BUILDING UNITS IN THE POROUS STRUCTURE OF AG(4,4'-BPY).NO3 , 1996 .

[57]  Xintao Wu,et al.  Two new coordination host frameworks for the inclusion of 4-amino-benzophenone guest molecules , 2001 .

[58]  T. Groy,et al.  A Molecular Railroad with Large Pores: Synthesis and Structure of Ni(4,4'-bpy)(2.5)(H(2)O)(2)(ClO(4))(2).1.5(4,4'-bpy).2H(2)O. , 1997, Inorganic chemistry.

[59]  M. P. Suh,et al.  1D Zigzag Coordination Polymers of Copper(II) and Nickel(II) with Mixed Ligands − Syntheses and Structures , 2001 .

[60]  M. Ward,et al.  Metric engineering of soft molecular host frameworks. , 2001, Accounts of chemical research.

[61]  W. L. Jolly Preparative Inorganic Reactions , 1967 .

[62]  Kumar Biradha,et al.  Crystal engineering: from weak hydrogen bonds to co-ordination bonds , 2003 .

[63]  C. Hu,et al.  Crystal-to-crystal transformation from a chain polymer to a two-dimensional network at low temperatures. , 2005, Angewandte Chemie.

[64]  Michael J. Zaworotko,et al.  Superstructural diversity in two dimensions: crystal engineering of laminated solids , 2001 .

[65]  Davide M. Proserpio,et al.  Interpenetrating diamondoid frameworks of silver(I) cations linked by N,N′-bidentate molecular rods , 1994 .

[66]  John C. Jeffery,et al.  Studies of the construction of coordination polymers using linear pyridyl-donor ligands , 1999 .

[67]  X. Bu,et al.  Crystal structure and properties of a CuII coordination polymer with 2-D grid-like host architecture for the inclusion of organic guest molecule , 2002 .

[68]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry: A Comprehensive Text , 1972 .

[69]  Yinglin Song,et al.  Synthesis, crystal structure and third-order nonlinear optical properties of a novel coordination polymer [Cd(en)(NO3)2(4,4'-bpy)]n containing three kinds of ligands (en = ethylenediamine) , 2003 .

[70]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[71]  S. Ng,,et al.  catena-Poly­[[[bis(μ-4-cyano­benzoato-κ2O:O)­bis­[(4-cyano­benzoato-κ2O,O′)­cobalt(II)]]-di-μ-4,4′-bi­pyridine-κ4N:N′] dihydrate di­methyl­form­amide tetrasolvate] , 2005 .

[72]  M. Zaworotko,et al.  Exciplex fluorescence of ([Zn(bipy)1.5(NO3)2)].CH3OH.0.5pyrene)n: a coordination polymer containing intercalated pyrene molecules (bipy = 4,4'-bipyridine). , 2002, Chemical communications.

[73]  A. Ma,et al.  Di­aqua(4,4′-bi­pyridine)­bis(4-cyano­benzoato)­cobalt(II) , 2003 .

[74]  C. Hu,et al.  Polymeric versus monomeric and tetrahedral versus octahedral coordination in zinc(II) pyridine complexes , 2001 .

[75]  F. Jiang,et al.  Syntheses and characterizations of four mixed-ligand hydrogen bonding supramolecular architectures with different structural motifs , 2005 .

[76]  X. M. Chen,et al.  Molecular ladders with multiple interpenetration of the lateral arms into the squares of adjacent ladders observed for [M2(4,4'-bpy)3(H2O)2(phba)2] (NO3)(2).4H2O (M = Cu2+ or Co2+; 4,4'-bpy = 4,4'-bipyridine; phba = 4-hydroxybenzoate). , 2000, Inorganic chemistry.

[77]  J. Maddox Crystals from first principles , 1988, Nature.

[78]  Michael J. Zaworotko,et al.  Interwoven two- and three-dimensional coordination polymers through self-assembly of Cu I cations with linear bidentate ligands , 1994 .

[79]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[80]  Katsuyuki Ogura,et al.  Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine , 1994 .

[81]  Mark D. Smith,et al.  Novel hydrogen-bonded two- and three-dimensional networks generated from the reaction of metal nitrate hydrates (M Cd, Co) with the bidentate linear ligand 4,4-bipyridine , 2000 .

[82]  Wei Chen,et al.  INCLUSION AND INTERCALATION OF 4,4′-BIPYRIDINE IN A ZINC(II) AQUA PERCHLORATO COMPLEX [Zn(4,4′-bpy)(H2O)3(ClO4)](ClO4)·(4,4′-bpy)1.5·H2O , 1998 .

[83]  K. Abboud,et al.  A novel two-fold interpenetrating 3D 42.84 network self-assembled from a new 1D coordination polymer , 2005 .

[84]  G. Enright,et al.  Coordination polymers of cobalt(II): [Co(4,4′-bpy)2(O2CCF3)2]n and [Co(4,4′-bpy)(O2CCH3)2(H2O)2]n , 1999 .

[85]  M. Zaworotko,et al.  Crystal structure of the coordination polymer [Co(bipy)1.5(NO3)2]·CS2 (bipy=4,4′-bipyridine), a new motif for a network sustained by ‘T-shape’ building blocks , 1998 .

[86]  J. Vittal,et al.  Silver-triphenylphosphine coordination polymers with linear spacer ligands , 2000 .

[87]  C. Rovira,et al.  A new (63)(69.81) non-interpenetrated paramagnetic network with helical nanochannels based on a tricarboxylic perchlorotriphenylmethyl radicalElectronic supplementary information (ESI) available: additional crystallographic data. See http://www.rsc.org/suppdata/cc/b3/b315147f/ , 2004 .

[88]  R. Gable,et al.  Reversible and non-reversible inclusion compounds of the nickel xanthate adducts with 4,4′-bipyridyl and with 2,2′-dipyridylamine , 1985 .

[89]  Michael J. Zaworotko,et al.  A NONINTERPENETRATED MOLECULAR LADDER WITH HYDROPHOBIC CAVITIES , 1996 .

[90]  Dario Braga,et al.  Crystal engineering, where from? Where to? , 2003, Chemical communications.

[91]  Kumar Biradha,et al.  Open Square-Grid Coordination Polymers of the Dimensions 20×20 Å: Remarkably Stable and Crystalline Solids Even after Guest Removal. , 2000, Angewandte Chemie.

[92]  John Maddox,et al.  Waves caused by extreme dilution , 1988, Nature.

[93]  C. Hu,et al.  Structural trends in one and two dimensional coordination polymers of cadmium(II) with halide bridges and pyridine-type ligands , 2003 .

[94]  S. Ng,,et al.  Clathration of Two-Dimensional Coordination Polymers: Synthesis and Structures of [M(4,4'-bpy)(2)(H(2)O)(2)](ClO(4))(2).(2,4'-bpy)(2).H(2)O and [Cu(4,4'-bpy)(2)(H(2)O)(2)](ClO(4))(4).(4,4'-H(2)Bpy) (M = Cd(II), Zn(II) and bpy = Bipyridine). , 1998, Inorganic chemistry.

[95]  S. Ng,,et al.  Linear Metal(II)-4,4′-Bipyridine (4,4′-bpy) Chains Organized into Two-Dimensional Rhombic Networks by Hydrogen Bonding. Crystal Structures of [Co(4,4′-bpy)(H2O)4] (ClO4)2.(4,4′-bpy)2.2H2O and [Zn(4,4′-bpy)(H2O)3(ClO4)] (ClO4).(4,4′-bpy)1·5.H20 , 1998 .

[96]  S. Varughese,et al.  Solvent-dependent coordination polymers: cobalt complexes of 3,5-dinitrobenzoic acid and 3,5-dinitro-4-methylbenzoic acid with 4,4'-bipyrdine. , 2004, Inorganic chemistry.

[97]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[98]  A. Gavezzotti,et al.  Are Crystal Structures Predictable , 1994 .

[99]  Peacock,et al.  (4,4'-bipyridine)dichloromanganese(II), a two-dimensional coordination polymer , 2000, Acta crystallographica. Section C, Crystal structure communications.

[100]  Jack Y. Lu,et al.  Synthesis and structure of two new coordination polymers featuring noncentrosymmetric inclusion of hydrogen-bonded species , 2003 .

[101]  C. Norman,et al.  A new metal-organic polymer with large grid acentric structure created by unbalanced inclusion species and its electrospun nanofibers. , 2001, Inorganic chemistry.

[102]  Michael J. Zaworotko,et al.  Triple interpenetration in [Ag(4,4′-bipyridine)][NO3], a cationic polymer with a three-dimensional motif generated by self-assembly of ‘T-shaped’ building blocks , 1995 .

[103]  Cameron J Kepert,et al.  Flexible sorption and transformation behavior in a microporous metal-organic framework. , 2002, Journal of the American Chemical Society.

[104]  Gerhard M. J. Schmidt,et al.  Photodimerization in the solid state , 1971 .

[105]  X. You,et al.  A TWO-DIMENSIONAL SQUARE NETWORK INCLUSION COMPOUND INCORPORATING GUEST MOLECULES THROUGH BOTH HYDROGEN BONDING AND NONIONIC ELECTROSTATIC ATTRACTION. CRYSTAL STRUCTURE OF CD(4,4'-BPY)2(H2O)2-(CLO4)2 - 1.5(4,4'-BPY) - (C6H4NO 3CL) - H2O , 1998 .

[106]  S. Kitagawa,et al.  Syntheses and crystal structures of three one-dimensional copper(II) complexes constructed by salicylate and 4,4′-bipyridine: ladder, zig-zag, and linear polymeric assembly , 2003 .

[107]  W. Wong,et al.  Synthesis and characterization of coordination polymers of Zn(II) with 1,3-bis(4-pyridyl)propane and 4,4'-pyridine ligands , 2004 .

[108]  K. Biradha,et al.  Flexible bilayer architectures in the coodination polymers [MII(NO3)2(1,2-BIS(4-pyridyl)ethane)1.5]n (MII = Co, Ni) , 1998 .

[109]  K. Biradha,et al.  Co-ordination polymers containing square grids of dimension 15 × 15 Å , 2000 .

[110]  K. Biradha,et al.  Covalent and noncovalent interpenetrating planar networks in the crystal structure of {[Ni(4,4′-bipyridine)2(NO3)2·2pyrene}n , 1999 .

[111]  S. Barnett,et al.  Structural diversity of building-blocks in coordination framework synthesis: combining M(NO3)2 junctions and bipyridyl ligands , 2003 .

[112]  Long‐Guan Zhu,et al.  catena‐Poly­[[bis(4‐cyano­benzoato)copper(II)]‐μ‐4,4′‐bi­pyridine‐κ2N:N′] , 2003 .

[113]  Jeffrey S. Moore,et al.  Zeolite-like behavior of a coordination network , 1995 .

[114]  Gautam R. Desiraju,et al.  The C-h···o hydrogen bond:  structural implications and supramolecular design. , 1996, Accounts of chemical research.

[115]  S. Kitagawa,et al.  Three‐Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4, 4′‐bpy)3(NO3)4]·xH2O}n (M Co, Ni, Zn) , 1997 .

[116]  Xiao‐Ming Chen,et al.  A novel two-dimensional rectangular network. Synthesis and structure of {[Cu(4,4′-bpy)(pyz)(H2O)2][PF6]2}n (4,4′-bpy = 4,4′-bipyridine, pyz = pyrazine) , 1998 .

[117]  A. Jacobson,et al.  One-Dimensional Coordination Polymers of Cobalt with 4,4'-Bipyridine: Syntheses and Structures. , 1998, Inorganic chemistry.

[118]  C. V. Krishnamohan Sharma,et al.  Crystal Engineering−Where Do We Go from Here? , 2002 .

[119]  C. Kepert,et al.  Zeolite-like crystal structure of an empty microporous molecular framework , 1999 .

[120]  J. Wuest,et al.  Engineering crystals by the strategy of molecular tectonics. , 2005, Chemical communications.

[121]  S. Ng,,et al.  Synthesis and crystal structures of two infinite molecular ladders Ag(4,4′-bpy)X (X = MeCO2·3H2O or H2PO4·H3PO4): function of hydrogen-bonding interaction , 2000 .

[122]  Wenbin Lin,et al.  Crystal engineering of NLO materials based on metal--organic coordination networks. , 2002, Accounts of chemical research.

[123]  O. Yaghi,et al.  Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels , 1995 .

[124]  Christer B. Aakeröy,et al.  Crystal engineering : Strategies and architectures , 1997 .

[125]  K. Abboud,et al.  Structural, thermal, and magnetic properties of three transition metal-4,4′-bipyridine coordination polymers: [Ni(4,4′-bipy)3(H2O)2](ClO4)2·1.4(4,4′-bipy)·3(H2O); [Co(4,4′-bipy)3(H2O)2](ClO4)2·1.4(4,4′-bipy)·3(H2O); [Cu(4,4′-bipy)3(DMSO)2](ClO4)2·2(4,4′-bipy) , 2003 .

[126]  G. J. Halder,et al.  In situ single-crystal X-ray diffraction studies of desorption and sorption in a flexible nanoporous molecular framework material. , 2005, Journal of the American Chemical Society.

[127]  Gang Li,et al.  Novel Pb(II), Zn(II), and Cd(II) coordination polymers constructed from ferrocenyl-substituted carboxylate and bipyridine-based ligands. , 2003, Inorganic chemistry.

[128]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[129]  Jian Lu,et al.  Coordination Polymers of Co(NCS)2 with Pyrazine and 4,4‘-Bipyridine: Syntheses and Structures , 1997 .

[130]  L. Jianmin,et al.  The Most Effective Packing of Layers: Synthesis and Structure of [Ni(4,4′-bipyridine)2(NCS)2]n , 1999 .

[131]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[132]  Li‐Ping Zhang,et al.  catena -Poly[[[tetraaquacopper(II)]-μ-4,4′-bipyridine-κ 2 N : N ′] 4-sulfonatobenzoate] , 2005 .

[133]  R. Pike,et al.  Coordination polymers of copper(I) halides. , 2000, Inorganic chemistry.

[134]  Mitsuru Kondo,et al.  A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF6(4,4′-bipyridine)2}n] , 2000 .

[135]  Mir Wais Hosseini,et al.  Molecular tectonics: from simple tectons to complex molecular networks. , 2005, Accounts of chemical research.

[136]  Robert J Hill,et al.  New approaches to the analysis of high connectivity materials: design frameworks based upon 4(4)- and 6(3)-subnet tectons. , 2005, Accounts of chemical research.

[137]  Xintao Wu,et al.  Lanthanide-transition metal coordination polymers based on multiple N- and O-donor ligands. , 2006, Chemical communications.