It was proved that the analysis of deuterium can be conducted using laser-induced plasma spectroscopy. By selecting the appropriate surrounding gas, its pressure, and gating time of the detection system, it was shown that the emission lines of both hydrogen (H(alpha)) and deuterium (D(alpha)), separated by only 0.179 nm, can be fully resolved. A linear calibration curve was also obtained, indicating that this technique has the potential for quantitative analysis of deuterium. The minimum detection limit achieved in this stage of research was estimated to be 50 ppm. We have also shown that this technique can be used as a simple and rapid method for D and H analysis in solid samples.