暂无分享,去创建一个
Leonardo Neves | Luis Espinosa-Anke | Francesco Barbieri | Jose Camacho-Collados | José Camacho-Collados | Leonardo Neves | Francesco Barbieri | Luis Espinosa-Anke
[1] Michael Wiegand,et al. Detection of Abusive Language: the Problem of Biased Datasets , 2019, NAACL.
[2] Omer Levy,et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach , 2019, ArXiv.
[3] Kalina Bontcheva,et al. Generalisation in named entity recognition: A quantitative analysis , 2017, Comput. Speech Lang..
[4] Paolo Rosso,et al. SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter , 2019, *SEMEVAL.
[5] Yiming Yang,et al. XLNet: Generalized Autoregressive Pretraining for Language Understanding , 2019, NeurIPS.
[6] Véronique Hoste,et al. SemEval-2018 Task 3: Irony Detection in English Tweets , 2018, *SEMEVAL.
[7] Preslav Nakov,et al. SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.
[8] Oren Etzioni,et al. Named Entity Recognition in Tweets: An Experimental Study , 2011, EMNLP.
[9] Brendan T. O'Connor,et al. Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments , 2010, ACL.
[10] Tomas Mikolov,et al. Enriching Word Vectors with Subword Information , 2016, TACL.
[11] Horacio Saggion,et al. SemEval 2018 Task 2: Multilingual Emoji Prediction , 2018, *SEMEVAL.
[12] Ilya Sutskever,et al. Language Models are Unsupervised Multitask Learners , 2019 .
[13] Omer Levy,et al. SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems , 2019, NeurIPS.
[14] Çagri Çöltekin,et al. Tübingen-Oslo at SemEval-2018 Task 2: SVMs perform better than RNNs in Emoji Prediction , 2018, SemEval@NAACL-HLT.
[15] Omer Levy,et al. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding , 2018, BlackboxNLP@EMNLP.
[16] Li Wang,et al. How Noisy Social Media Text, How Diffrnt Social Media Sources? , 2013, IJCNLP.
[17] Douwe Kiela,et al. SentEval: An Evaluation Toolkit for Universal Sentence Representations , 2018, LREC.
[18] Ming-Wei Chang,et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.
[19] Joachim Wagner,et al. Code Mixing: A Challenge for Language Identification in the Language of Social Media , 2014, CodeSwitch@EMNLP.
[20] Timothy Baldwin,et al. Shared Tasks of the 2015 Workshop on Noisy User-generated Text: Twitter Lexical Normalization and Named Entity Recognition , 2015, NUT@IJCNLP.
[21] Miguel A. Alonso,et al. EN-ES-CS: An English-Spanish Code-Switching Twitter Corpus for Multilingual Sentiment Analysis , 2016, LREC.
[22] Subbarao Kambhampati,et al. Dude, srsly?: The Surprisingly Formal Nature of Twitter's Language , 2013, ICWSM.
[23] Wei Xu,et al. From Shakespeare to Twitter: What are Language Styles all about? , 2017 .
[24] Rada Mihalcea,et al. Beneath the Tip of the Iceberg: Current Challenges and New Directions in Sentiment Analysis Research , 2020, IEEE Transactions on Affective Computing.
[25] Heng Ji,et al. Visual Attention Model for Name Tagging in Multimodal Social Media , 2018, ACL.
[26] Alice H. Oh,et al. Sociolinguistic analysis of Twitter in multilingual societies , 2014, HT.
[27] Rossano Schifanella,et al. Detecting Sarcasm in Multimodal Social Platforms , 2016, ACM Multimedia.
[28] Preslav Nakov,et al. SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval) , 2019, *SEMEVAL.
[29] Kalina Bontcheva,et al. Twitter Part-of-Speech Tagging for All: Overcoming Sparse and Noisy Data , 2013, RANLP.
[30] Timothy Baldwin,et al. Lexical Normalisation of Short Text Messages: Makn Sens a #twitter , 2011, ACL.
[31] Saif Mohammad,et al. SemEval-2018 Task 1: Affect in Tweets , 2018, *SEMEVAL.
[32] Tomas Mikolov,et al. Bag of Tricks for Efficient Text Classification , 2016, EACL.
[33] Saif Mohammad,et al. SemEval-2016 Task 6: Detecting Stance in Tweets , 2016, *SEMEVAL.