Evolving Signal Processing for Brain–Computer Interfaces

Because of the increasing portability and wearability of noninvasive electrophysiological systems that record and process electrical signals from the human brain, automated systems for assessing changes in user cognitive state, intent, and response to events are of increasing interest. Brain-computer interface (BCI) systems can make use of such knowledge to deliver relevant feedback to the user or to an observer, or within a human-machine system to increase safety and enhance overall performance. Building robust and useful BCI models from accumulated biological knowledge and available data is a major challenge, as are technical problems associated with incorporating multimodal physiological, behavioral, and contextual data that may in the future be increasingly ubiquitous. While performance of current BCI modeling methods is slowly increasing, current performance levels do not yet support widespread uses. Here we discuss the current neuroscientific questions and data processing challenges facing BCI designers and outline some promising current and future directions to address them.

[1]  Hyunwoo Nam,et al.  Independent Component Analysis of Ictal EEG in Medial Temporal Lobe Epilepsy , 2002, Epilepsia.

[2]  Rajesh P. N. Rao,et al.  Towards adaptive classification for BCI , 2006, Journal of neural engineering.

[3]  Julia P. Owen,et al.  Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG , 2010, NeuroImage.

[4]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[5]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[6]  Klaus-Robert Müller,et al.  The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects , 2007, NeuroImage.

[7]  Klaus-Robert Müller,et al.  Towards Zero Training for Brain-Computer Interfacing , 2008, PloS one.

[8]  George E. P. Box,et al.  Topics in Control. 4. The Analysis of Closed-Loop Dynamic-Stochastic Systems. , 1972 .

[9]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[10]  R. Jindra Mass action in the nervous system W. J. Freeman, Academic Press, New York (1975), 489 pp., (hard covers). $34.50 , 1976, Neuroscience.

[11]  Hualou Liang,et al.  Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment , 2000, Biological Cybernetics.

[12]  W. Singer,et al.  Gamma-Phase Shifting in Awake Monkey Visual Cortex , 2010, The Journal of Neuroscience.

[13]  J. Kalaska,et al.  Cerebral cortical mechanisms of reaching movements. , 1992, Science.

[14]  H. Berger On the electroencephalogram of man. , 1969, Electroencephalography and clinical neurophysiology.

[15]  Carryl L. Baldwin,et al.  Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification , 2012, NeuroImage.

[16]  D. A. Dickey The Analysis of Time Series: An Introduction (4th ed.) , 1991 .

[17]  Hannes Nickisch glm-ie: Generalised Linear Models Inference & Estimation Toolbox , 2012, J. Mach. Learn. Res..

[18]  Tom Michael Mitchell,et al.  Predicting Human Brain Activity Associated with the Meanings of Nouns , 2008, Science.

[19]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[20]  O. Sporns,et al.  Structural Determinants of Functional Brain Dynamics , 2007 .

[21]  M. Hallett Human Brain Function , 1998, Trends in Neurosciences.

[22]  Stefan Haufe,et al.  Sparse Causal Discovery in Multivariate Time Series , 2008, NIPS Causality: Objectives and Assessment.

[23]  Barnabás Póczos,et al.  Separation theorem for independent subspace analysis and its consequences , 2012, Pattern Recognit..

[24]  G Florian,et al.  Dynamic spectral analysis of event-related EEG data. , 1995, Electroencephalography and clinical neurophysiology.

[25]  D J McFarland,et al.  Brain-computer interface research at the Wadsworth Center. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[26]  Karl J. Friston,et al.  Dynamic causal models of neural system dynamics: current state and future extensions , 2007, Journal of Biosciences.

[27]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[28]  Bhaskar D. Rao,et al.  Iterative reweighted algorithms for sparse signal recovery with temporally correlated source vectors , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[29]  Björn Schelter,et al.  Time-variant estimation of directed influences during Parkinsonian tremor , 2009, Journal of Physiology-Paris.

[30]  D.-M. Dobrea,et al.  An EEG Coherence Based Method Used for Mental Tasks Classification , 2007, 2007 IEEE International Conference on Computational Cybernetics.

[31]  Andrei Popescu-Belis,et al.  Proceedings of the 5th international workshop on Machine Learning for Multimodal Interaction , 2008 .

[32]  Klaus-Robert Müller,et al.  A regularized discriminative framework for EEG analysis with application to brain–computer interface , 2010, NeuroImage.

[33]  Motoaki Kawanabe,et al.  Modeling Sparse Connectivity Between Underlying Brain Sources for EEG/MEG , 2009, IEEE Transactions on Biomedical Engineering.

[34]  W. Marsden I and J , 2012 .

[35]  Rodrigo Quian Quiroga,et al.  Nonlinear multivariate analysis of neurophysiological signals , 2005, Progress in Neurobiology.

[36]  Shin Ishii,et al.  Markov and Semi-Markov Switching of Source Appearances for Nonstationary Independent Component Analysis , 2007, IEEE Transactions on Neural Networks.

[37]  Masashi Sugiyama,et al.  Dual-Augmented Lagrangian Method for Efficient Sparse Reconstruction , 2009, IEEE Signal Processing Letters.

[38]  Nikolaus Kriegeskorte,et al.  Analyzing for information, not activation, to exploit high-resolution fMRI , 2007, NeuroImage.

[39]  Scott Makeig,et al.  Patch-basis electrocortical source imaging in epilepsy , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[40]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[41]  Kevin Murphy,et al.  Bayes net toolbox for Matlab , 1999 .

[42]  Daniel P. Ferris,et al.  Visual Evoked Responses During Standing and Walking , 2010, Front. Hum. Neurosci..

[43]  Lester Melie-García,et al.  Estimating brain functional connectivity with sparse multivariate autoregression , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  Geraint Rees,et al.  Mechanisms of Attention , 2003 .

[45]  David P. Wipf,et al.  Variational Bayesian Inference Techniques , 2010, IEEE Signal Processing Magazine.

[46]  W. R. Adey,et al.  Computer techniques in correlation and spectral analyses of cerebral slow waves during discriminative behavior. , 1961, Experimental neurology.

[47]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[48]  D. Long Networks of the Brain , 2011 .

[49]  C. Granger,et al.  Spurious regressions in econometrics , 1974 .

[50]  Motoaki Kawanabe,et al.  Toward Unsupervised Adaptation of LDA for Brain–Computer Interfaces , 2011, IEEE Transactions on Biomedical Engineering.

[51]  Eve Marder,et al.  Neuroscience. The neuron doctrine, redux. , 2005, Science.

[52]  J J Vidal,et al.  Toward direct brain-computer communication. , 1973, Annual review of biophysics and bioengineering.

[53]  Monica N. Nicolescu,et al.  A Visual Tracking Framework for Intent Recognition in Videos , 2008, ISVC.

[54]  Stefan Haufe,et al.  Single-trial analysis and classification of ERP components — A tutorial , 2011, NeuroImage.

[55]  Katarzyna J. Blinowska,et al.  Determination of EEG activity propagation: pair-wise versus multichannel estimate , 2004, IEEE Transactions on Biomedical Engineering.

[56]  H. Flor,et al.  A spelling device for the paralysed , 1999, Nature.

[57]  Rabab K Ward,et al.  A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals , 2007, Journal of neural engineering.

[58]  Bin He,et al.  Electrophysiological Imaging of Brain Activity and Connectivity—Challenges and Opportunities , 2011, IEEE Transactions on Biomedical Engineering.

[59]  Justin A. Blanco,et al.  Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement , 2011, Journal of neural engineering.

[60]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[61]  Krishna V Shenoy,et al.  Human cortical prostheses: lost in translation? , 2009, Neurosurgical focus.

[62]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[63]  Aapo Hyvärinen,et al.  Testing the ICA mixing matrix based on inter-subject or inter-session consistency , 2011, NeuroImage.

[64]  Aapo Hyvärinen,et al.  Validating the independent components of neuroimaging time series via clustering and visualization , 2004, NeuroImage.

[65]  Walter R. Gilks,et al.  A Language and Program for Complex Bayesian Modelling , 1994 .

[66]  Virginia R. de Sa,et al.  Preprocessing and Meta-Classification for Brain-Computer Interfaces , 2007, IEEE Transactions on Biomedical Engineering.

[67]  Bart Vanrumste,et al.  Journal of Neuroengineering and Rehabilitation Open Access Review on Solving the Inverse Problem in Eeg Source Analysis , 2022 .

[68]  Karl J. Friston,et al.  PHRENOLOGY : What Can Neuroimaging Tell Us About Distributed Circuitry ? , 2005 .

[69]  Ricardo Chavarriaga,et al.  Learning dictionaries of spatial and temporal EEG primitives for brain-computer interfaces , 2011, ICML 2011.

[70]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[71]  R. Ward,et al.  EMG and EOG artifacts in brain computer interface systems: A survey , 2007, Clinical Neurophysiology.

[72]  Yijun Wang,et al.  Amplitude and phase coupling measures for feature extraction in an EEG-based brain–computer interface , 2007, Journal of neural engineering.

[73]  Aapo Hyvärinen,et al.  Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis , 2010, NeuroImage.

[74]  Marian Stewart Bartlett,et al.  Face image analysis by unsupervised learning , 2001 .

[75]  Trevor Darrell,et al.  Transfer learning for image classification with sparse prototype representations , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[76]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[77]  J. R. Wolpaw,et al.  Brain–computer interfaces (BCIs): Detection instead of classification , 2008, Journal of Neuroscience Methods.

[78]  Steffen Bickel,et al.  Multi-view clustering , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[79]  Bernhard Schölkopf,et al.  Towards a general independent subspace analysis , 2007 .

[80]  Michael Eichler,et al.  A graphical approach for evaluating effective connectivity in neural systems , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[81]  Olaf Sporns,et al.  Small worlds inside big brains , 2006, Proceedings of the National Academy of Sciences.

[82]  Joseph E. O’Doherty,et al.  Unscented Kalman Filter for Brain-Machine Interfaces , 2009, PloS one.

[83]  D. Simon Kalman filtering with state constraints: a survey of linear and nonlinear algorithms , 2010 .

[84]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[85]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[86]  Karl J. Friston,et al.  A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration , 2011, Front. Hum. Neurosci..

[87]  Miguel A. L. Nicolelis,et al.  Brain–machine interfaces: past, present and future , 2006, Trends in Neurosciences.

[88]  E. Harth,et al.  Electric Fields of the Brain: The Neurophysics of Eeg , 2005 .

[89]  Robert Oostenveld,et al.  Using Brain–Computer Interfaces and Brain-State Dependent Stimulation as Tools in Cognitive Neuroscience , 2011, Front. Psychology.

[90]  Kazuyuki Aihara,et al.  Optimizing Spectral Filters for Single Trial EEG Classification , 2006, DAGM-Symposium.

[91]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[92]  B. Pakkenberg,et al.  Neocortical neuron number in humans: Effect of sex and age , 1997, The Journal of comparative neurology.

[93]  Gregory A. Worrell,et al.  Modeling cortical source dynamics and interactions during seizure , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[94]  Taghi M. Khoshgoftaar,et al.  A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..

[95]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[96]  A. Kübler,et al.  A Brain–Computer Interface Controlled Auditory Event‐Related Potential (P300) Spelling System for Locked‐In Patients , 2009, Annals of the New York Academy of Sciences.

[97]  Cuntai Guan,et al.  Filter Bank Common Spatial Pattern (FBCSP) algorithm using online adaptive and semi-supervised learning , 2011, The 2011 International Joint Conference on Neural Networks.

[98]  S. Bunce,et al.  Functional Brain Imaging Using Near-Infrared Technology Assessing Cognitive Activity in Real-Life Situations , 2007 .

[99]  Scott Makeig,et al.  Estimation of task workload from EEG data: New and current tools and perspectives , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[100]  Sham M. Kakade,et al.  Multi-view clustering via canonical correlation analysis , 2009, ICML '09.

[101]  K. Kendrick,et al.  Partial Granger causality—Eliminating exogenous inputs and latent variables , 2008, Journal of Neuroscience Methods.

[102]  Klaus Nordhausen,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman , 2009 .

[103]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[104]  Klaus-Robert Müller,et al.  Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms , 2004, IEEE Transactions on Biomedical Engineering.

[105]  T. Sejnowski,et al.  Dynamic Brain Sources of Visual Evoked Responses , 2002, Science.

[106]  M. Scherg Fundamentals if dipole source potential analysis , 1990 .

[107]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[108]  Y. Truong,et al.  Independent Component Analysis Involving Autocorrelated Sources With an Application to Functional Magnetic Resonance Imaging , 2011, Journal of the American Statistical Association.

[109]  Dinh-Tuan Pham,et al.  Approximate Joint Singular Value Decomposition of an Asymmetric Rectangular Matrix Set , 2011, IEEE Transactions on Signal Processing.

[110]  Moritz Grosse-Wentrup,et al.  Beamforming in Noninvasive Brain–Computer Interfaces , 2009, IEEE Transactions on Biomedical Engineering.

[111]  Peter A. Robinson,et al.  Visual gamma oscillations: waves, correlations, and other phenomena, including comparison with experimental data , 2007, Biological Cybernetics.

[112]  J. Friedman Regularized Discriminant Analysis , 1989 .

[113]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[114]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction, 4th edn. , 1990 .

[115]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[116]  Lei Ding,et al.  Motor imagery classification by means of source analysis for brain–computer interface applications , 2004, Journal of neural engineering.

[117]  Per Capita,et al.  About the authors , 1995, Machine Vision and Applications.

[118]  F. H. Lopes da Silva,et al.  The Impact of EEG/MEG Signal Processing and Modeling in the Diagnostic and Management of Epilepsy , 2008, IEEE Reviews in Biomedical Engineering.

[119]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[120]  G. Wilson,et al.  Removal of ocular artifacts from electro-encephalogram by adaptive filtering , 2004, Medical and Biological Engineering and Computing.

[121]  Viktor K. Jirsa,et al.  Handbook of Brain Connectivity , 2007 .

[122]  F. L. D. Silva,et al.  The Impact of EEG/MEG Signal Processing and Modeling in the Diagnostic and Management of Epilepsy , 2008 .

[123]  James A. Roberts,et al.  Biophysical Mechanisms of Multistability in Resting-State Cortical Rhythms , 2011, The Journal of Neuroscience.

[124]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[125]  Vangelis Sakkalis,et al.  Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG , 2011, Comput. Biol. Medicine.

[126]  Juhan Nam,et al.  Multimodal Deep Learning , 2011, ICML.

[127]  Klaus-Robert Müller,et al.  Optimizing spatio-temporal filters for improving Brain-Computer Interfacing , 2005, NIPS.

[128]  S. Makeig,et al.  Mining event-related brain dynamics , 2004, Trends in Cognitive Sciences.

[129]  James Bennett,et al.  The Netflix Prize , 2007 .

[130]  Tzyy-Ping Jung,et al.  Biosensor Technologies for Augmented Brain–Computer Interfaces in the Next Decades , 2012, Proceedings of the IEEE.

[131]  Fabian J. Theis,et al.  Towards a general independent subspace analysis , 2006, NIPS.

[132]  Rey Ramírez,et al.  Source localization , 2008, Scholarpedia.

[133]  Daniel P. Ferris,et al.  Removal of movement artifact from high-density EEG recorded during walking and running. , 2010, Journal of neurophysiology.

[134]  R. Oostenveld,et al.  Independent EEG Sources Are Dipolar , 2012, PloS one.

[135]  Lai-Wan Chan,et al.  An Adaptive Method for Subband Decomposition ICA , 2006, Neural Computation.

[136]  Tzyy-Ping Jung,et al.  Independent Component Analysis of Electroencephalographic Data , 1995, NIPS.

[137]  Bhaskar D. Rao,et al.  Newton method for the ICA mixture model , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[138]  Giulio Tononi,et al.  Estimation of Cortical Connectivity From EEG Using State-Space Models , 2010, IEEE Transactions on Biomedical Engineering.

[139]  S. Bunce,et al.  Functional brain imaging using near-infrared technology , 2007, IEEE Engineering in Medicine and Biology Magazine.

[140]  T. Sejnowski,et al.  Removing electroencephalographic artifacts by blind source separation. , 2000, Psychophysiology.

[141]  Theodore W. Berger,et al.  Brain-Computer Interfaces: An international assessment of research and development trends , 2008 .

[142]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[143]  Brendan Z. Allison,et al.  The Hybrid BCI , 2010, Frontiers in Neuroscience.

[144]  Lars Kai Hansen,et al.  Model Selection for Convolutive ICA with an Application to Spatiotemporal Analysis of EEG , 2007, Neural Computation.

[145]  Anatole Lécuyer,et al.  An overview of research on "passive" brain-computer interfaces for implicit human-computer interaction , 2010 .

[146]  P. A. Blight The Analysis of Time Series: An Introduction , 1991 .

[147]  G. Schalk,et al.  Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans , 2011, Journal of neural engineering.

[148]  S. Bressler,et al.  Granger Causality: Basic Theory and Application to Neuroscience , 2006, q-bio/0608035.

[149]  Tim Mullen,et al.  Analyzing Brain Dynamics of Affective Engagement , 2011 .

[150]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[151]  Scott Makeig,et al.  High-frequency Broadband Modulations of Electroencephalographic Spectra , 2009, Front. Hum. Neurosci..

[152]  Dean J. Krusienski,et al.  Value of amplitude, phase, and coherence features for a sensorimotor rhythm-based brain–computer interface , 2012, Brain Research Bulletin.

[153]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[154]  Christa Neuper,et al.  Restricted Boltzmann Machines as useful tool for detecting oscillatory EEG components , 2011 .

[155]  Scott Makeig,et al.  Neuroelectromagnetic Forward Head Modeling Toolbox , 2010, Journal of Neuroscience Methods.

[156]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[157]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[158]  Jens Timmer,et al.  Handbook of time series analysis : recent theoretical developments and applications , 2006 .

[159]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[160]  S. Makeig,et al.  EEG changes accompanying learned regulation of 12-Hz EEG activity , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[161]  Ashish Kapoor,et al.  Multimodal affect recognition in learning environments , 2005, ACM Multimedia.

[162]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[163]  Karl J. Friston,et al.  Dynamic causal modeling , 2010, Scholarpedia.

[164]  Fabian J. Theis,et al.  The signal separation evaluation campaign (2007-2010): Achievements and remaining challenges , 2012, Signal Process..

[165]  Guy Marchal,et al.  Automated multi-moda lity image registration based on information theory , 1995 .

[166]  Fusheng Yang,et al.  BCI competition 2003-data set IIb: enhancing P300 wave detection using ICA-based subspace projections for BCI applications , 2004, IEEE Transactions on Biomedical Engineering.

[167]  Julien Mairal,et al.  Convex and Network Flow Optimization for Structured Sparsity , 2011, J. Mach. Learn. Res..

[168]  N. Bigdely-Shamlo,et al.  Brain Activity-Based Image Classification From Rapid Serial Visual Presentation , 2008, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[169]  T. Sejnowski,et al.  Functionally Independent Components of the Late Positive Event-Related Potential during Visual Spatial Attention , 1999, The Journal of Neuroscience.

[170]  Cuntai Guan,et al.  Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms , 2011, IEEE Transactions on Biomedical Engineering.

[171]  Martin J. Wainwright,et al.  Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.

[172]  Jose M Carmena,et al.  Invasive or noninvasive: understanding brain-machine interface technology. , 2010, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[173]  Barak A. Pearlmutter,et al.  Independent Components of Magnetoencephalography: Localization , 2002, Neural Computation.

[174]  Klaus-Robert Müller,et al.  Subject independent EEG-based BCI decoding , 2009, NIPS.

[175]  Christian Kothe,et al.  Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general , 2011, Journal of neural engineering.

[176]  E. Marder,et al.  The Neuron Doctrine, Redux , 2005, Science.

[177]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[178]  Bart Vanrumste,et al.  Review on solving the forward problem in EEG source analysis , 2007, Journal of NeuroEngineering and Rehabilitation.

[179]  W. Hesse,et al.  The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies , 2003, Journal of Neuroscience Methods.

[180]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[181]  Bhaskar D. Rao,et al.  Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization , 2006, NIPS.

[182]  L. Goddard Information Theory , 1962, Nature.

[183]  David P. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[184]  C. Neuper,et al.  Combining Brain–Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges , 2010, Front. Neurosci..

[185]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[186]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[187]  D. Tucker,et al.  EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. , 1997, Electroencephalography and clinical neurophysiology.

[188]  Abhinandan Das,et al.  Google news personalization: scalable online collaborative filtering , 2007, WWW '07.

[189]  Paulo Sergio Ramirez,et al.  Fundamentals of Adaptive Filtering , 2002 .

[190]  M. Congedo,et al.  Group independent component analysis of resting state EEG in large normative samples. , 2010, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[191]  Bhaskar D. Rao,et al.  Sparse Signal Recovery With Temporally Correlated Source Vectors Using Sparse Bayesian Learning , 2011, IEEE Journal of Selected Topics in Signal Processing.

[192]  Chee-Ming Ting,et al.  Spectral Estimation of Nonstationary EEG Using Particle Filtering With Application to Event-Related Desynchronization (ERD) , 2011, IEEE Transactions on Biomedical Engineering.

[193]  Anatole Lécuyer,et al.  Classifying EEG for brain computer interfaces using Gaussian processes , 2008, Pattern Recognit. Lett..

[194]  Andrei Popescu-Belis,et al.  Machine Learning for Multimodal Interaction , 4th International Workshop, MLMI 2007, Brno, Czech Republic, June 28-30, 2007, Revised Selected Papers , 2008, MLMI.

[195]  S Makeig,et al.  A natural basis for efficient brain-actuated control. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[196]  Ian Daly,et al.  Brain computer interface control via functional connectivity dynamics , 2012, Pattern Recognit..

[197]  M. Peters,et al.  Volume conduction effects in EEG and MEG. , 1998, Electroencephalography and clinical neurophysiology.

[198]  Klaus-Robert Muller,et al.  Finding stationary brain sources in EEG data , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[199]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[200]  J. Wolpaw,et al.  EMG contamination of EEG: spectral and topographical characteristics , 2003, Clinical Neurophysiology.

[201]  J.L.M. Perez,et al.  Linear Discriminant Analysis on Brain Computer Interface , 2007, 2007 IEEE International Symposium on Intelligent Signal Processing.

[202]  Terrence J. Sejnowski,et al.  ICA Mixture Models for Unsupervised Classification of Non-Gaussian Classes and Automatic Context Switching in Blind Signal Separation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[203]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[204]  J Gross,et al.  REPRINTS , 1962, The Lancet.

[205]  Matthew de Brecht,et al.  Combining sparseness and smoothness improves classification accuracy and interpretability , 2012, NeuroImage.

[206]  Yuan-Pin Lin,et al.  EEG-Based Emotion Recognition in Music Listening , 2010, IEEE Transactions on Biomedical Engineering.

[207]  Mark R. Bower,et al.  Microseizures and the spatiotemporal scales of human partial epilepsy. , 2010, Brain : a journal of neurology.

[208]  E. Donchin,et al.  Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. , 1988, Electroencephalography and clinical neurophysiology.

[209]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[210]  Miles A. Whittington,et al.  Human Neuroscience , 2022 .

[211]  M A B BRAZIER,et al.  Cross-correlation and autocorrelation studies of electroencephalographic potentials. , 1952, Electroencephalography and clinical neurophysiology.

[212]  Guy Marchal,et al.  Automated multi-modality image registration based on information theory , 1995 .

[213]  Vince D. Calhoun,et al.  Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering , 2011, NeuroImage.

[214]  Moritz Grosse-Wentrup,et al.  Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI , 2011, Comput. Intell. Neurosci..

[215]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces , 2007, Journal of neural engineering.

[216]  Mingzhou Ding,et al.  Estimating Granger causality from fourier and wavelet transforms of time series data. , 2007, Physical review letters.

[217]  G. Edelman,et al.  Consciousness and Complexity , 1998 .

[218]  Anatole Lécuyer,et al.  FuRIA: An Inverse Solution Based Feature Extraction Algorithm Using Fuzzy Set Theory for Brain–Computer Interfaces , 2009, IEEE Transactions on Signal Processing.

[219]  V. D. Sa Spectral Clustering with Two Views , 2007 .

[220]  W. Freeman,et al.  Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbit. , 2000, Journal of neurophysiology.

[221]  Jianfeng Feng,et al.  Uncovering Interactions in the Frequency Domain , 2008, PLoS Comput. Biol..

[222]  E. Gysels,et al.  Phase synchronization for the recognition of mental tasks in a brain-computer interface , 2004, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[223]  Clemens Brunner,et al.  Dimensionality Reduction and Channel Selection of Motor Imagery Electroencephalographic Data , 2009, Comput. Intell. Neurosci..

[224]  P. Comon,et al.  Ica: a potential tool for bci systems , 2008, IEEE Signal Processing Magazine.

[225]  Clemens Brunner,et al.  Online Control of a Brain-Computer Interface Using Phase Synchronization , 2006, IEEE Transactions on Biomedical Engineering.

[226]  Daniel L. Silver,et al.  Guest editor’s introduction: special issue on inductive transfer learning , 2008, Machine Learning.

[227]  Karl J. Friston Models of brain function in neuroimaging. , 2005, Annual review of psychology.

[228]  G. Pfurtscheller,et al.  Optimal spatial filtering of single trial EEG during imagined hand movement. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[229]  Moritz Grosse-Wentrup,et al.  Multitask Learning for Brain-Computer Interfaces , 2010, AISTATS.

[230]  H. Spekreijse,et al.  Mathematical dipoles are adequate to describe realistic generators of human brain activity , 1988, IEEE Transactions on Biomedical Engineering.

[231]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[232]  Erkki Oja,et al.  Applications of neural blind separation to signal and image processing , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[233]  Jianfeng Feng,et al.  A Novel Extended Granger Causal Model Approach Demonstrates Brain Hemispheric Differences during Face Recognition Learning , 2009, PLoS Comput. Biol..

[234]  Gerhard Tröster,et al.  What's in the Eyes for Context-Awareness? , 2011, IEEE Pervasive Computing.

[235]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[236]  T. Sejnowski,et al.  Electroencephalographic Brain Dynamics Following Manually Responded Visual Targets , 2004, PLoS biology.

[237]  Klaus-Robert Müller,et al.  Injecting noise for analysing the stability of ICA components , 2004, Signal Process..

[238]  Pini Gurfil,et al.  Methods for Sparse Signal Recovery Using Kalman Filtering With Embedded Pseudo-Measurement Norms and Quasi-Norms , 2010, IEEE Transactions on Signal Processing.

[239]  M. Murray,et al.  EEG source imaging , 2004, Clinical Neurophysiology.

[240]  Scott E. Kerick,et al.  Brain–Computer Interface Technologies in the Coming Decades , 2012, Proceedings of the IEEE.