Asymptotic Analysis of Multilevel Best Linear Unbiased Estimators
暂无分享,去创建一个
[1] Benjamin Peherstorfer,et al. Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..
[2] Gilles Pagès,et al. Multilevel Richardson-Romberg Extrapolation , 2014 .
[3] F. Chatelin. Spectral approximation of linear operators , 2011 .
[4] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[5] Benjamin Peherstorfer,et al. Convergence analysis of multifidelity Monte Carlo estimation , 2018, Numerische Mathematik.
[6] Stephen S. Lavenberg,et al. A Perspective on the Use of Control Variables to Increase the Efficiency of Monte Carlo Simulations , 1981 .
[7] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[8] R. Rannacher,et al. Asymptotic error expansion and Richardson extranpolation for linear finite elements , 1986 .
[9] Frédéric Vrins,et al. An Antithetic Approach of Multilevel Richardson-Romberg Extrapolation Estimator for Multidimensional SDES , 2016, NAA.
[10] J. Stoer,et al. Numerical treatment of ordinary differential equations by extrapolation methods , 1966 .
[11] L. Richardson. The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .
[12] Claude Brezinski,et al. Convergence acceleration during the 20th century , 2000 .
[13] D. Talay,et al. Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .
[14] Gianluca Geraci,et al. A Generalized Framework for Approximate Control Variates , 2018 .
[15] Wolfgang L. Wendland,et al. A new approach to Richardson extrapolation in the finite element method for second order elliptic problems , 2009, Math. Comput..
[16] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[17] Michael L. Stein,et al. Interpolation of spatial data , 1999 .
[18] Benjamin Peherstorfer,et al. Optimal Model Management for Multifidelity Monte Carlo Estimation , 2016, SIAM J. Sci. Comput..
[19] Michael B. Giles,et al. Multilevel Monte Carlo methods , 2013, Acta Numerica.
[20] Gianluca Geraci,et al. A generalized approximate control variate framework for multifidelity uncertainty quantification , 2018, J. Comput. Phys..
[21] Elisabeth Ullmann,et al. On Multilevel Best Linear Unbiased Estimators , 2020, SIAM/ASA J. Uncertain. Quantification.
[22] Tony Shardlow,et al. Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.