Adaptive model-based motion estimation

A general discrete-time, adaptive, multidimensional framework is introduced for estimating the motion of one or several object features from their successive nonlinear projections on an image plane. The motion model consists of a set of linear difference equations with parameters estimated recursively from a nonlinear observation equation. The model dimensionality corresponds to that of the original, nonprojected motion space, thus allowing to compensate for variable projection characteristics such as paning and zooming of the camera. Extended recursive least-squares and linear-quadratic tracking algorithms are used to adaptively adjust the model parameters and minimize the errors of either smoothing, filtering or prediction of the object trajectories in the projection plane. Both algorithms are derived using a second order approximation of the projection nonlinearities. All the results presented here use a generalized vectorial notation suitable for motion estimation of any finite number of object features and various approximations of the nonlinear projection. The application of the model-based motion estimator for temporal decimation/interpolation in digital video sequence compression systems is presented.

[1]  Masanobu Yamamoto,et al.  A General Aperture Problem for Direct Estimation of 3-D Motion Parameters , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Yiannis Aloimonos,et al.  Perspective approximations , 1990, Image Vis. Comput..

[3]  Robert J. Baron,et al.  Visual Memories and Mental Images , 1985, Int. J. Man Mach. Stud..

[4]  Narendra Ahuja,et al.  Motion and structure from point correspondences with error estimation: planar surfaces , 1991, IEEE Trans. Signal Process..

[5]  H. Neudecker A Note on Kronecker Matrix Products and Matrix Equation Systems , 1969 .

[6]  Arun K. Sood,et al.  Analysis of long image sequence for structure and motion estimation , 1989, IEEE Trans. Syst. Man Cybern..

[7]  Ishwar K. Sethi,et al.  Finding Trajectories of Feature Points in a Monocular Image Sequence , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Hormoz Shariat,et al.  Motion Estimation with More than Two Frames , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  W. Vetter Matrix Calculus Operations and Taylor Expansions , 1973 .

[10]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch , 1981 .

[11]  A. Rosenfeld,et al.  Computer vision: basic principles , 1988, Proc. IEEE.

[12]  C. Chen,et al.  On Receding Horizon Feedback Control , 1981 .

[13]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[14]  Narendra Ahuja,et al.  Matching Two Perspective Views , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[16]  Thomas S. Huang,et al.  Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surfaces , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Jake K. Aggarwal,et al.  On the computation of motion from sequences of images-A review , 1988, Proc. IEEE.

[18]  Regis J. Crinon,et al.  Motion estimation: the concept of velocity bandwidth , 1992, Other Conferences.

[19]  Narendra Ahuja,et al.  3-D Motion Estimation, Understanding, and Prediction from Noisy Image Sequences , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch, II: Singular value decomposition , 1982 .

[21]  J A Perrone,et al.  Model for the computation of self-motion in biological systems. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[22]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch, III: Finite point correspondences and the three-view problem , 1984 .

[23]  R. Lenz,et al.  Image Sequence Coding Using Scene Analysis and Spatio-Temporal Interpolation , 1983 .

[24]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .