A computationally feasible approximate resolution matrix for seismic inverse problems
暂无分享,去创建一个
[1] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[2] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[3] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[4] G. Backus,et al. The Resolving Power of Gross Earth Data , 1968 .
[5] Joel Franklin,et al. Well-posed stochastic extensions of ill-posed linear problems☆ , 1970 .
[6] R. Wiggins,et al. The general linear inverse problem - Implication of surface waves and free oscillations for earth structure. , 1972 .
[7] Guust Nolet,et al. Resolution Analysis for Discrete Systems , 1978 .
[8] D. Jackson. The use of a priori data to resolve non‐uniqueness in linear inversion , 1979 .
[9] Paul G. Richards,et al. Quantitative Seismology: Theory and Methods , 1980 .
[10] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[11] Magnus R. Hestenes,et al. Conjugate Direction Methods in Optimization , 1980 .
[12] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[13] Sven Treitel,et al. Plane‐wave decomposition of seismograms , 1982 .
[14] W. Menke. Geophysical data analysis : discrete inverse theory , 1984 .
[15] R. T. Cutler,et al. Tomographic determination of velocity and depth in laterally varying media , 1985 .
[16] Gregory Beylkin,et al. Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .
[17] A slant-stack procedure for point-source data , 1986 .
[18] J. Scales. On the use of conjugate gradient to calculate the eigenvalues and singular values of large, sparse matrices , 1989 .
[19] Gene H. Golub,et al. Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 , 1989, SIAM Rev..
[20] F. Collino,et al. A numerical method for the explanation of sensitivity: the case of the identification of the 2D stratified elastic medium , 1990 .
[21] R. Snieder,et al. Solving large linear inverse problems by projection , 1990 .
[22] George A. McMechan,et al. tau-p Seismic Data for Viscoelastic Media - Part 2: Linearized INVERSION1 , 1991 .
[23] Michel Kern,et al. Inversion of Reflection Seismograams by Differential Semblance Analysis: Algorithm Structure and Synthetic Examples , 1992 .
[24] Don W. Vasco,et al. Formal inversion of ISC arrival times for mantle P-velocity structure , 1993 .
[25] J. Berryman. Resolution of iterative inverses in seismic tomography , 1994 .
[26] P. Stark,et al. Confidence regions for mantle heterogeneity , 1994 .
[27] Michel Kern,et al. Inversion of reflection seismograms by differential semblance analysis: algorithm structure and synthetic examples1 , 1994 .
[28] James G. Berryman,et al. Tomographic resolution without singular value decomposition , 1994, Optics & Photonics.
[29] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[30] Estimating the energy source and reflectivity by seismic inversion , 1995 .
[31] R G Pratt,et al. Are our parameter estimators biased? The significance of finite-difference regularization operators , 1995 .
[32] G. McMechan,et al. Estimation of resolution and covariance for large matrix inversions , 1995 .
[33] K. Bube,et al. Resolution of Crosswell Tomography With Transmission And Reflection Traveltimes , 1995 .
[34] M. Hanke. Conjugate gradient type methods for ill-posed problems , 1995 .
[35] William W. Symes,et al. Full waveform inversion of marine reflection data in the plane-wave domain , 1997 .