Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery.

[1]  Jijin Gu,et al.  Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. , 2011, Biomaterials.

[2]  K. Stein,et al.  Chemotherapy wafers for high grade glioma. , 2011, The Cochrane database of systematic reviews.

[3]  Soonhag Kim,et al.  A multimodal nanoparticle-based cancer imaging probe simultaneously targeting nucleolin, integrin αvβ3 and tenascin-C proteins. , 2011, Biomaterials.

[4]  A. Hovanessian,et al.  Surface Expressed Nucleolin Is Constantly Induced in Tumor Cells to Mediate Calcium-Dependent Ligand Internalization , 2010, PloS one.

[5]  Jijin Gu,et al.  Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(ɛ-caprolactone) nanoparticles: In vitro and in vivo evaluation. , 2010, International journal of pharmaceutics.

[6]  P. Bates,et al.  A new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism. , 2010, Cancer research.

[7]  Z. Gao,et al.  Paclitaxel efficacy is increased by parthenolide via nuclear factor-kappaB pathways in in vitro and in vivo human non-small cell lung cancer models. , 2010, Current cancer drug targets.

[8]  C. Hadjipanayis,et al.  EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. , 2010, Cancer research.

[9]  Wei Wang,et al.  Combined Inhibitory Effects of Celecoxib and Fluvastatin on the Growth of Human Hepatocellular Carcinoma Xenografts in Nude Mice , 2010, The Journal of international medical research.

[10]  Qiang Zhang,et al.  The therapeutic efficacy of conjugated linoleic acid - paclitaxel on glioma in the rat. , 2010, Biomaterials.

[11]  Stephen J. Florczyk,et al.  Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment. , 2010, Biomaterials.

[12]  B. Clary,et al.  Aptamer applications for targeted cancer therapy. , 2010, Future oncology.

[13]  Shuang-Qing Zhang,et al.  Liquid chromatography-tandem mass spectrometry for the determination of paclitaxel in rat plasma after intravenous administration of poly(L-glutamic acid)-alanine-paclitaxel conjugate. , 2010, Journal of pharmaceutical and biomedical analysis.

[14]  Cao Xie,et al.  Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[15]  J. Xie,et al.  Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature. , 2010, Biomaterials.

[16]  Sung Ho Ryu,et al.  A Nucleolin-Targeted Multimodal Nanoparticle Imaging Probe for Tracking Cancer Cells Using an Aptamer , 2010, Journal of Nuclear Medicine.

[17]  Christine Jérôme,et al.  Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[18]  V. Sridharan,et al.  Plasma Membrane Nucleolin Is a Receptor for the Anticancer Aptamer AS1411 in MV4-11 Leukemia Cells , 2009, Molecular Pharmacology.

[19]  M. Manfait,et al.  Monitoring of biochemical changes through the c6 gliomas progression and invasion by fourier transform infrared (FTIR) imaging. , 2009, Analytical chemistry.

[20]  Janice A. Zawaski,et al.  The inhibition of glioma growth in vitro and in vivo by a chitosan/ellagic acid composite biomaterial. , 2009, Biomaterials.

[21]  Jun Chen,et al.  Follicle-stimulating hormone peptide can facilitate paclitaxel nanoparticles to target ovarian carcinoma in vivo. , 2009, Cancer research.

[22]  Marie C. M. Lin,et al.  The use of folate-PEG-grafted-hybranched-PEI nonviral vector for the inhibition of glioma growth in the rat. , 2009, Biomaterials.

[23]  Warren C W Chan,et al.  Mediating tumor targeting efficiency of nanoparticles through design. , 2009, Nano letters.

[24]  Sven Christian,et al.  Cell surface nucleolin antagonist causes endothelial cell apoptosis and normalization of tumor vasculature , 2009, Angiogenesis.

[25]  Christine Jérôme,et al.  Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[26]  Xin-guo Jiang,et al.  Quantum dots for tracking cellular transport of lectin-functionalized nanoparticles. , 2008, Biochemical and biophysical research communications.

[27]  R. Béliveau,et al.  Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep‐2 , 2008, British journal of pharmacology.

[28]  Eric Pridgen,et al.  Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles , 2008, Molecular pharmaceutics.

[29]  Robert Langer,et al.  Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers , 2008, Proceedings of the National Academy of Sciences.

[30]  T. Budinger,et al.  Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[31]  Pieter Wesseling,et al.  Diffuse glioma growth: a guerilla war , 2007, Acta Neuropathologica.

[32]  Robert Langer,et al.  Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. , 2007, Biomaterials.

[33]  R. Müller,et al.  Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[34]  Chi-Hwa Wang,et al.  Electrospun Micro- and Nanofibers for Sustained Delivery of Paclitaxel to Treat C6 Glioma in Vitro , 2006, Pharmaceutical Research.

[35]  Si-Shen Feng,et al.  The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. , 2006, Biomaterials.

[36]  Wei Lu,et al.  Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. , 2006, Biomaterials.

[37]  Hyun Seok Song,et al.  Synergistic effect and condition of pegylated interferon α with paclitaxel on glioblastoma , 2006 .

[38]  J. Richie,et al.  Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Rigas,et al.  A Phase II trial of paclitaxel and topotecan with filgrastim in patients with recurrent or refractory glioblastoma multiforme or anaplastic astrocytoma , 2005, Journal of Neuro-Oncology.

[40]  Z. Zhou,et al.  In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. , 2005, International journal of pharmaceutics.

[41]  L. Kèlland,et al.  Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. , 2004, European journal of cancer.

[42]  Erkki Ruoslahti,et al.  Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels , 2003, The Journal of cell biology.

[43]  K. Hoang-Xuan,et al.  Primary brain tumours in adults , 2003, The Lancet.

[44]  M. Berger,et al.  Epidemiology of primary brain tumors: current concepts and review of the literature. , 2002, Neuro-oncology.

[45]  D. Aggarwal,et al.  Paclitaxel and its formulations. , 2002, International journal of pharmaceutics.

[46]  Qiang Zhang,et al.  In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. , 2001, Chemical & pharmaceutical bulletin.

[47]  K. Avgoustakis,et al.  Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA-mPEG nanoparticles. , 2001, International journal of pharmaceutics.

[48]  W. V. van Weerden,et al.  Use of nude mouse xenograft models in prostate cancer research , 2000, The Prostate.

[49]  R. Langer,et al.  Drug delivery and targeting. , 1998, Nature.

[50]  R. Jain,et al.  Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  V. Torchilin,et al.  Biodegradable long-circulating polymeric nanospheres. , 1994, Science.

[52]  L. Huang,et al.  Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. , 1992, Biochimica et biophysica acta.

[53]  Xue Ying,et al.  PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. , 2011, Biomaterials.

[54]  Hyun Seok Song,et al.  Synergistic effect and condition of pegylated interferon alpha with paclitaxel on glioblastoma. , 2006, International journal of oncology.

[55]  Mathieu Carpentier,et al.  Surface nucleolin participates in both the binding and endocytosis of lactoferrin in target cells. , 2004, European journal of biochemistry.

[56]  R. Hájek,et al.  Paclitaxel (Taxol): a review of its antitumor activity in clinical studies Minireview. , 1996, Neoplasma.

[57]  E. Rowinsky Clinical pharmacology of Taxol. , 1993, Journal of the National Cancer Institute. Monographs.

[58]  Rowinsky Ek Clinical pharmacology of Taxol. , 1993 .

[59]  Stephen J. Florczyk,et al.  Chitosan-alginate 3d Scaffolds as a Mimic of the Glioma Tumor Microenvironment , 2022 .