Spatial organization of visuomotor reflexes in Drosophila

SUMMARY In most animals, the visual system plays a central role in locomotor guidance. Here, we examined the functional organization of visuomotor reflexes in the fruit fly, Drosophila, using an electronic flight simulator. Flies exhibit powerful avoidance responses to visual expansion centered laterally. The amplitude of these expansion responses is three times larger than those generated by image rotation. Avoidance of a laterally positioned focus of expansion emerges from an inversion of the optomotor response when motion is restricted to the rear visual hemisphere. Furthermore, motion restricted to rear quarter-fields elicits turning responses that are independent of the direction of image motion about the animal's yaw axis. The spatial heterogeneity of visuomotor responses explains a seemingly peculiar behavior in which flies robustly fixate the contracting pole of a translating flow field.

[1]  K Hausen,et al.  Decoding of retinal image flow in insects. , 1993, Reviews of oculomotor research.

[2]  N. Strausfeld,et al.  Organization and significance of neurons that detect change of visual depth in the hawk moth Manduca sexta , 2000, The Journal of comparative neurology.

[3]  J. Koenderink,et al.  Facts on optic flow , 1987, Biological Cybernetics.

[4]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 1979, Journal of comparative physiology.

[5]  Michael H Dickinson,et al.  Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. , 2002, The Journal of experimental biology.

[6]  T. S. Collett,et al.  Some operating rules for the optomotor system of a hoverfly during voluntary flight , 1980, Journal of comparative physiology.

[7]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[8]  N. Vickers Mechanisms of animal navigation in odor plumes. , 2000, The Biological bulletin.

[9]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[10]  Erich Buchner,et al.  Elementary detectors for vertical movement in the visual system of Drosophila , 1978, Biological Cybernetics.

[11]  Daniel G. Keehn,et al.  Neural correlates of the optomotor response in the fly , 1967, Kybernetik.

[12]  M. Dickinson,et al.  The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. , 1997, The Journal of experimental biology.

[13]  R. Strauss The central complex and the genetic dissection of locomotor behaviour , 2002, Current Opinion in Neurobiology.

[14]  K G Götz [Optomoter studies of the visual system of several eye mutants of the fruit fly Drosophila]. , 1964, Kybernetik.

[15]  H G Krapp,et al.  Neuronal matched filters for optic flow processing in flying insects. , 2000, International review of neurobiology.

[16]  Michael H Dickinson,et al.  Fly Flight A Model for the Neural Control of Complex Behavior , 2001, Neuron.

[17]  Hateren,et al.  Blowfly flight and optic flow. II. Head movements during flight , 1999, The Journal of experimental biology.

[18]  Martin Heisenberg,et al.  Targeted expression of tetanus neurotoxin interferes with behavioral responses to sensory input in Drosophila. , 2002, Journal of neurobiology.

[19]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[20]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[21]  G. Laurent,et al.  Computation of Object Approach by a Wide-Field, Motion-Sensitive Neuron , 1999, The Journal of Neuroscience.

[22]  Martin Heisenberg,et al.  The three-dimensional optomotor torque system ofDrosophila melanogaster , 1982, Journal of comparative physiology.

[23]  M. Egelhaaf,et al.  Optomotor course control in flies with largely asymmetric visual input , 2000, Journal of Comparative Physiology A.

[24]  R. Wolf,et al.  Visual control of straight flight in Drosophila melanogaster , 1990, Journal of Comparative Physiology A.

[25]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[26]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[27]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[28]  Rind,et al.  The locust DCMD, a movement-detecting neurone tightly tuned to collision trajectories , 1997, The Journal of experimental biology.

[29]  M. Srinivasan,et al.  Range perception through apparent image speed in freely flying honeybees , 1991, Visual Neuroscience.

[30]  F. A. Miles,et al.  Visual Motion and Its Role in the Stabilization of Gaze , 1992 .

[31]  Holger G. Krapp,et al.  Neural encoding of behaviourally relevant visual-motion information in the fly , 2002, Trends in Neurosciences.

[32]  Karl Georg Götz,et al.  Loss of flexibility in an optomotor flight control system of the Drosophila mutant "small optic lobes" , 1985 .

[33]  M V Srinivasan,et al.  Visual navigation in flying insects. , 2000, International review of neurobiology.

[34]  M. Land Motion and vision: why animals move their eyes , 1999, Journal of Comparative Physiology A.

[35]  John R. Gray,et al.  Activity of descending contralateral movement detector neurons and collision avoidance behaviour in response to head-on visual stimuli in locusts , 2001, Journal of Comparative Physiology A.

[36]  K. Götz Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster , 1987 .

[37]  Karl Georg Götz,et al.  Flight control in Drosophila by visual perception of motion , 1968, Kybernetik.

[38]  M. Heisenberg,et al.  Neurogenetics and Behaviour in Insects , 1984 .

[39]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[40]  R. Hengstenberg,et al.  Binocular contributions to optic flow processing in the fly visual system. , 2001, Journal of neurophysiology.

[41]  R. Wolf,et al.  Reafferent control of optomotor yaw torque inDrosophila melanogaster , 1988, Journal of Comparative Physiology A.

[42]  R. Shapley,et al.  Photoreception and Vision in Invertebrates , 1984, NATO ASI Series.

[43]  Mandyam V. Srinivasan,et al.  Motion detection in insect orientation and navigation , 1999, Vision Research.