Causal Effects of Monetary Shocks: Semiparametric Conditional Independence Tests with a Multinomial Propensity Score

Macroeconomists have long been concerned with the causal effects of monetary policy. When the identification of causal effects is based on a selection-on-observables assumption, non-causality amounts to the conditional independence of outcomes and policy changes. This paper develops a semiparametric test for conditional independence in time series models linking a multinomial policy variable with unobserved potential outcomes. Our approach to conditional independence testing is motivated by earlier parametric tests, as in Romer and Romer (1989, 1994, 2004). The procedure developed here is semiparametric in the sense that we model the process determining the distribution of treatment – the policy propensity score – but leave the model for outcomes unspecified. A conceptual innovation is that we adapt the cross-sectional potential outcomes framework to a time series setting. This leads to a generalized definition of Sims (1980) causality. A technical contribution is the development of root-T consistent distribution-free inference methods for full conditional independence testing, appropriate for dependent data and allowing for first-step estimation of the propensity score.

[1]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[2]  Halbert White,et al.  Time-series estimation of the effects of natural experiments , 2006 .

[3]  Jushan Bai,et al.  Testing Parametric Conditional Distributions of Dynamic Models , 2003, Review of Economics and Statistics.

[4]  Julio J. Rotemberg,et al.  An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy , 1997, NBER Macroeconomics Annual.

[5]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[6]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[7]  Steven Strongin,et al.  The identification of monetary policy disturbances: explaining the liquidity puzzle , 1995 .

[8]  C. Sims MACROECONOMICS AND REALITY , 1977 .

[9]  E. Khmaladze,et al.  Martingale Approach in the Theory of Goodness-of-Fit Tests , 1982 .

[10]  Joshua D. Angrist,et al.  Mostly Harmless Econometrics: An Empiricist's Companion , 2008 .

[11]  Martin Eichenbaum,et al.  Monetary Policy Shocks: What Have We Learned and to What End?" in The Handbook of Macroeconomics , 1999 .

[12]  Barry Eichengreen,et al.  BANK RATE POLICY UNDER THE INTERWAR GOLD STANDARD: A DYNAMIC PROBIT MODEL* , 1985 .

[13]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[14]  J. Stock,et al.  Macroeconomic Forecasting Using Diffusion Indexes , 2002 .

[15]  Donald W. K. Andrews,et al.  Nonparametric Kernel Estimation for Semiparametric Models , 1995, Econometric Theory.

[16]  Alberto Abadie Semiparametric Difference-in-Differences Estimators , 2005 .

[17]  Eric M. Leeper,et al.  Narrative and VAR Approaches to Monetary Policy: Common Identification Problems , 1996 .

[18]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[19]  Jinyong Hahn,et al.  How informative is the initial condition in the dynamic panel model with fixed effects , 1999 .

[20]  J. Hahn On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects , 1998 .

[21]  M. Lechner Sequential Matching Estimation of Dynamic Causal Models , 2004, SSRN Electronic Journal.

[22]  G. Imbens The Role of the Propensity Score in Estimating Dose-Response Functions , 1999 .

[23]  Roger Koenker,et al.  Inference on the Quantile Regression Process , 2000 .

[24]  C. Sims,et al.  What Does Monetary Policy Do , 1996 .

[25]  Kyungchul Song Testing Conditional Independence via Rosenblatt Transforms , 2007, 0911.3787.

[26]  C. Sims Money, Income, and Causality , 1972 .

[27]  J. Galí,et al.  Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory , 1998 .

[28]  E. Khmaladze,et al.  An innovation approach to goodness of fit tests in $R m$ , 1988 .

[29]  Yanqin Fan,et al.  Consistent hypothesis testing in semiparametric and nonparametric models for econometric time series , 1999 .

[30]  Jean-Marie Dufour,et al.  On the relationship between impulse response analysis, innovation accounting and Granger causality , 1993 .

[31]  Alberto Abadie Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models , 2002 .

[32]  Gary Chamberlain,et al.  The General Equivalence of Granger and Sims Causality , 1982 .

[33]  D. Rubin Estimating causal effects of treatments in randomized and nonrandomized studies. , 1974 .

[34]  G. Imbens,et al.  The Propensity Score with Continuous Treatments , 2005 .

[35]  Estate V. Khmaladze,et al.  Goodness of Fit Problem and Scanning Innovation Martingales , 1993 .

[36]  B. Bernanke,et al.  The Federal Funds Rate and the Channels of Monetary Transnission , 1990 .

[37]  Winfried Stute,et al.  Distribution free specification tests of conditional models , 2008 .

[38]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[39]  Hira L. Koul,et al.  Nonparametric model checks for time series , 1999 .

[40]  Jean-Marie Dufour,et al.  Short run and long run causality in time series , 2003 .

[41]  J. Grammig,et al.  Discretion versus Policy Rules in Practice , 2007 .

[42]  H. Bierens Consistent model specification tests , 1982 .

[43]  Peter C. B. Phillips,et al.  Nonstationary Binary Choice , 2000 .

[44]  L. Phaneuf,et al.  Monetary policy shocks:: Testing identification conditions under time-varying conditional volatility , 2004 .

[45]  Herman J. Bierens,et al.  A consistent conditional moment test of functional form , 1990 .

[46]  G. Imbens,et al.  Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score , 2000 .

[47]  Tao Zha,et al.  DOES MONETARY POLICY GENERATE RECESSIONS? , 2006, Macroeconomic Dynamics.

[48]  James D. Hamilton,et al.  A Model for the Federal Funds Rate Target , 1999 .

[49]  B. Bernanke,et al.  Measuring Monetary Policy , 1995 .

[50]  C. Sims Solving Linear Rational Expectations Models , 2002 .

[51]  D. Pollard Convergence of stochastic processes , 1984 .

[52]  E. Mammen Bootstrap and Wild Bootstrap for High Dimensional Linear Models , 1993 .

[53]  M. Shapiro Federal Reserve Policy: Cause and Effect , 1993 .

[54]  M. A. Arcones,et al.  Central limit theorems for empirical andU-processes of stationary mixing sequences , 1994 .

[55]  A. W. van der Vaart,et al.  Estimating the causal effect of a time‐varying treatment on time‐to‐event using structural nested failure time models , 2004, math/0409165.

[56]  Lixing Zhu,et al.  Model checks for regression: an innovation process approach , 1998 .

[57]  Herman J. Bierens,et al.  Asymptotic Theory of Integrated Conditional Moment Tests , 1997 .

[58]  H. Uhlig,et al.  Towards a Monthly Business Cycle Chronology for the Euro Area , 2004 .

[59]  P. Robinson,et al.  Hypothesis Testing in Semiparametric and Nonparametric Models for Econometric Time Series , 1989 .

[60]  Peter C. B. Phillips,et al.  Dynamics of the Federal Funds Target Rate: A Nonstationary Discrete Choice Approach , 2002 .

[61]  J. Kmenta Mostly Harmless Econometrics: An Empiricist's Companion , 2010 .

[62]  Jean Boivin,et al.  Monetary Policy in a Data-Rich Environment , 2001 .

[63]  Jean Boivin,et al.  Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach , 2003 .

[64]  Sokbae Lee,et al.  Nonparametric Tests of Conditional Treatment Effects , 2009 .

[65]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[66]  Eric M. Leeper,et al.  The Dynamic Impacts of Monetary Policy: An Exercise in Tentative Identification , 1994, Journal of Political Economy.

[67]  Asymptotics for Semiparametric Econometric Models: II. Stochastic Equicontinuity and Nonparametric Kernel Estimation , 1989 .

[68]  Jean-Marie Dufour,et al.  Short-Run and Long-Rub Causality in Time Series: Theory. , 1998 .

[69]  J. Florens,et al.  A Note on Noncausality , 1982 .

[70]  Donald B. Rubin,et al.  Bayesian Inference for Causal Effects: The Role of Randomization , 1978 .

[71]  J. Robins,et al.  Estimating exposure effects by modelling the expectation of exposure conditional on confounders. , 1992, Biometrics.

[72]  D. Romer,et al.  Federal Reserve Information and the Behavior of Interest Rates , 2000 .

[73]  Jordi Galí,et al.  Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory , 1998 .

[74]  M. Lechner Identification and Estimation of Causal Effects of Multiple Treatments Under the Conditional Independence Assumption , 1999, SSRN Electronic Journal.

[75]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[76]  G. Imbens,et al.  Matching on the Estimated Propensity Score , 2009 .

[77]  Frank Schorfheide,et al.  Computing sunspot equilibria in linear rational expectations models , 2003 .

[78]  Charles M. Kahn,et al.  THE SOLUTION OF LINEAR DIFFERENCE MODELS UNDER RATIONAL EXPECTATIONS , 1980 .

[79]  Jean-Pierre Florens,et al.  A Linear-theory for Noncausality , 1985 .

[80]  D. Romer,et al.  A New Measure of Monetary Shocks: Derivation and Implications , 2003 .

[81]  Petra E. Todd,et al.  Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme , 1997 .

[82]  Petra E. Todd,et al.  Matching As An Econometric Evaluation Estimator , 1998 .

[83]  J. Robins,et al.  Estimation of the Causal Effect of a Time-Varying Exposure on the Marginal Mean of a Repeated Binary Outcome , 1999 .