Nonlinear Eigenvalue Problems with Specified Eigenvalues

This work considers eigenvalue problems that are nonlinear in the eigenvalue parameter. Given such a nonlinear eigenvalue problem $T$, we are concerned with finding the minimal backward error such that $T$ has a set of prescribed eigenvalues with prescribed algebraic multiplicities. We consider backward errors that only allow constant perturbations, which do not depend on the eigenvalue parameter. While the usual resolvent norm addresses this question for a single eigenvalue of multiplicity one, the general setting involving several eigenvalues is significantly more difficult. Under mild assumptions, we derive a singular value optimization characterization for the minimal perturbation that addresses the general case.

[1]  R. Alam,et al.  On sensitivity of eigenvalues and eigendecompositions of matrices , 2005 .

[2]  Angewandte Mathematik,et al.  Continuation of eigenvalues and invariant pairs for parameterized nonlinear eigenvalue problems , 2011 .

[3]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[4]  David Bindel,et al.  Localization Theorems for Nonlinear Eigenvalue Problems , 2013, SIAM J. Matrix Anal. Appl..

[5]  Heinrich Voss,et al.  Nonlinear Eigenvalue Problems , 2012 .

[6]  Alexander N. Malyshev,et al.  A formula for the 2-norm distance from a matrix to the set of matrices with multiple eigenvalues , 1999, Numerische Mathematik.

[7]  Emre Mengi,et al.  Numerical Optimization of Eigenvalues of Hermitian Matrix Functions , 2011, SIAM J. Matrix Anal. Appl..

[8]  Wolf-Jurgen Beyn,et al.  An integral method for solving nonlinear eigenvalue problems , 2010, 1003.1580.

[9]  Daniel Kressner,et al.  Perturbation, extraction and refinement of invariant pairs for matrix polynomials , 2011 .

[10]  C. D. Boor,et al.  Divided Differences , 2005, math/0502036.

[11]  Daniel Kressner,et al.  A block Newton method for nonlinear eigenvalue problems , 2009, Numerische Mathematik.

[13]  Alan Edelman,et al.  The dimension of matrices (matrix pencils) with given Jordan (Kronecker) canonical forms , 1995 .

[14]  Raúl Tempone,et al.  On NonAsymptotic Optimal Stopping Criteria in Monte Carlo Simulations , 2014, SIAM J. Sci. Comput..

[15]  Peter Cedric Effenberger Robust Solution Methods for Nonlinear Eigenvalue Problems , 2013 .

[16]  Daniel Kressner,et al.  Generalized eigenvalue problems with specified eigenvalues , 2010, 1009.2222.

[17]  Avner Friedman,et al.  Nonlinear eigenvalue problems , 1968 .

[18]  L. Trefethen Spectra and pseudospectra , 2005 .

[19]  SK. SAFIQUE AHMAD,et al.  On Pseudospectra, Critical Points, and Multiple Eigenvalues of Matrix Pencils , 2010, SIAM J. Matrix Anal. Appl..

[20]  E. Mengi,et al.  Matrix Polynomials with Specified Eigenvalues , 2012, 1206.6967.

[21]  R. Mennicken,et al.  Non-Self-Adjoint Boundary Eigenvalue Problems , 2003 .

[22]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[23]  Nicholas J. Higham,et al.  NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.

[24]  V. Mehrmann,et al.  Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .

[25]  W. Michiels,et al.  Structured pseudospectra for nonlinear eigenvalue problems , 2008 .

[26]  Israel Gohberg,et al.  On the local theory of regular analytic matrix functions , 1993 .

[27]  Nicholas J. Higham,et al.  Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications , 2001, SIAM J. Matrix Anal. Appl..

[28]  C. Effenberger,et al.  Robust Successive Computation of Eigenpairs for Nonlinear Eigenvalue Problems , 2013, SIAM J. Matrix Anal. Appl..

[29]  A. Bunse-Gerstner,et al.  Numerical computation of an analytic singular value decomposition of a matrix valued function , 1991 .

[30]  Wim Michiels,et al.  Pseudospectra and stability radii for analytic matrix functions with application to time-delay systems , 2006 .

[31]  K. Green,et al.  Structured pseudospectra for nonlinear eigenvalue problems , 2008 .

[32]  Axel Ruhe ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .

[33]  Rafikul Alam,et al.  Pseudospectra, critical points and multiple eigenvalues of matrix polynomials , 2009 .

[34]  M. Keldysh,et al.  ON THE COMPLETENESS OF THE EIGENFUNCTIONS OF SOME CLASSES OF NON-SELFADJOINT LINEAR OPERATORS , 1971 .

[35]  F. R. Gantmakher The Theory of Matrices , 1984 .

[36]  Z. Bai,et al.  NONLINEAR RAYLEIGH-RITZ ITERATIVE METHOD FOR SOLVING LARGE SCALE NONLINEAR EIGENVALUE PROBLEMS , 2010 .

[37]  Adrian S. Lewis,et al.  Optimization and Pseudospectra, with Applications to Robust Stability , 2003, SIAM J. Matrix Anal. Appl..

[38]  W. Beyn An integral method for solving nonlinear eigenvalue problems , 2012 .

[39]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .