Experimental and computational studies on S-decorated Ti3C2 MXene as anode material in Li-ion batteries

[1]  Guozhao Fang,et al.  Progress and prospect of low-temperature zinc metal batteries , 2021, Advanced Powder Materials.

[2]  Zhiyuan Zeng,et al.  Stabilizing zinc anode via a chelation and desolvation electrolyte additive , 2021, Advanced Powder Materials.

[3]  Hongwei Cheng,et al.  Porous SnO2 microsphere and its carbon nanotube hybrids: Controllable preparation, structures and electrochemical performances as anode materials , 2021 .

[4]  X. Dai,et al.  Promoting the energy density of lithium-ion capacitor by coupling the pore-size and nitrogen content in capacitive carbon cathode , 2021 .

[5]  Jian Yang,et al.  Ti3C2Tx with a hydroxyl-rich surface for metal sulfides as high performance electrode materials for sodium/lithium storage , 2021 .

[6]  Vei Wang,et al.  VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code , 2019, Comput. Phys. Commun..

[7]  Rui Zhang,et al.  NiCo-LDH/Ti3C2 MXene hybrid materials for lithium ion battery with high-rate capability and long cycle life , 2020, Journal of Energy Chemistry.

[8]  Xiaobing Liu,et al.  qvasp: A flexible toolkit for VASP users in materials simulations , 2020, Comput. Phys. Commun..

[9]  Hao Meng,et al.  Highly safe and ionothermal synthesis of Ti3C2 MXene with expanded interlayer spacing for enhanced lithium storage , 2020, Journal of Energy Chemistry.

[10]  T. Ma,et al.  Recent Progress in MXene‐Based Materials: Potential High‐Performance Electrocatalysts , 2020, Advanced Functional Materials.

[11]  Pengfei Yu,et al.  Synthesis of nickel hydroxide/delaminated-Ti3C2 MXene nanosheets as promising anode material for high performance lithium ion battery , 2020 .

[12]  Jin Cao,et al.  NiMn Layered Double Hydroxide Nanosheets In-situ Anchored on Ti3C2 MXene via Chemical Bonds for Superior Supercapacitors , 2020 .

[13]  Haijiao Zhang,et al.  Ti3C2Tx MXene Nanosheets as a Robust and Conductive Tight on Si Anodes Significantly Enhance Electrochemical Lithium Storage Performance. , 2020, ACS nano.

[14]  P. Sáha,et al.  3D Porous Ti3C2 MXene/NiCo-MOF Composites for Enhanced Lithium Storage , 2020, Nanomaterials.

[15]  D. He,et al.  TiO 2 Nanoparticles In Situ Formed on Ti 3 C 2 Nanosheets by a One‐Step Ethanol‐Thermal Method for Enhanced Reversible Lithium‐Ion Storage , 2020 .

[16]  Haiying Du,et al.  Chalcogenated-Ti3C2X2 MXene (X = O, S, Se and Te) as a high-performance anode material for Li-ion batteries , 2020 .

[17]  Hong Gao,et al.  First-principles study of high performance lithium/sodium storage of Ti 3 C 2 T 2 nanosheets as electrode materials , 2020 .

[18]  Jinyuan Zhou,et al.  Electrostatically Assembling 2D Nanosheets of MXene and MOF-Derivatives into 3D Hollow Frameworks for Enhanced Lithium Storage. , 2019, Small.

[19]  W. Han,et al.  Vapor Deposition Red Phosphorus to Prepare Nitrogen-Doped Ti3C2Tx MXenes Composites for Lithium-ion Batteries. , 2019, The journal of physical chemistry letters.

[20]  Liyi Shi,et al.  Creating Sandwich-like Ti3C2/TiO2/rGO as Anode Materials with High Energy and Power Density for Li-Ion Hybrid Capacitors , 2019, ACS Sustainable Chemistry & Engineering.

[21]  Yutao Li,et al.  A stable 2D nano-columnar sandwich layered phthalocyanine negative electrode for lithium-ion batteries , 2019, Journal of Power Sources.

[22]  X. Tao,et al.  Atomic Sulfur Covalently Engineered Interlayers of Ti3C2 MXene for Ultra‐Fast Sodium‐Ion Storage by Enhanced Pseudocapacitance , 2019, Advanced Functional Materials.

[23]  Wei Zhang,et al.  Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity , 2019, Energy Storage Materials.

[24]  Shaojun Guo,et al.  Rational Design of MXene/1T‐2H MoS2‐C Nanohybrids for High‐Performance Lithium–Sulfur Batteries , 2018 .

[25]  Yan Yu,et al.  Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries , 2018 .

[26]  Libo Wang,et al.  Synthesis and Electrochemical Properties of Two-Dimensional RGO/Ti3C2Tx Nanocomposites , 2018, Nanomaterials.

[27]  Weiyuan Deng,et al.  3D Porous MXene (Ti3C2)/Reduced Graphene Oxide Hybrid Films for Advanced Lithium Storage. , 2018, ACS applied materials & interfaces.

[28]  X. Bao,et al.  Ti3C2 MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities. , 2017, ACS nano.

[29]  J. Xiong,et al.  Environmental Friendly Scalable Production of Colloidal 2D Titanium Carbonitride MXene with Minimized Nanosheets Restacking for Excellent Cycle Life Lithium-Ion Batteries , 2017 .

[30]  Kai Xiao,et al.  Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene. , 2016, ACS nano.

[31]  Chang E. Ren,et al.  Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices , 2016 .

[32]  Yury Gogotsi,et al.  Porous Two‐Dimensional Transition Metal Carbide (MXene) Flakes for High‐Performance Li‐Ion Storage , 2016 .

[33]  X. Tao,et al.  Sn⁴⁺ Ion Decorated Highly Conductive Ti3C2 MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance. , 2016, ACS nano.

[34]  Kevin M. Cook,et al.  X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) , 2016 .

[35]  H. Alshareef,et al.  Effect of Postetch Annealing Gas Composition on the Structural and Electrochemical Properties of Ti2CTx MXene Electrodes for Supercapacitor Applications , 2015 .

[36]  Y. Gogotsi,et al.  Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. , 2014, ACS applied materials & interfaces.

[37]  Yury Gogotsi,et al.  Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. , 2014, Journal of the American Chemical Society.

[38]  Yury Gogotsi,et al.  Intercalation and delamination of layered carbides and carbonitrides , 2013, Nature Communications.

[39]  Qing Tang,et al.  Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. , 2012, Journal of the American Chemical Society.

[40]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[41]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[42]  H. Nesbitt,et al.  Polarized X-ray absorption spectroscopy and XPS of TiS , 2005 .