Progress on "Pico" Air Vehicles

As the characteristic size of a flying robot decreases, the challenges for successful flight revert to basic questions of fabrication, actuation, fluid mechanics, stabilization, and power, whereas such questions have in general been answered for larger aircraft. When developing a flying robot on the scale of a common housefly, all hardware must be developed from scratch as there is nothing ‘off-the-shelf’ which can be used for mechanisms, sensors, or computation that would satisfy the extreme mass and power limitations. This technology void also applies to techniques available for fabrication and assembly of the aeromechanical components: the scale and complexity of the mechanical features requires new ways to design and prototype at scales between macro and microeletromechanical systems, but with rich topologies and material choices one would expect when designing human-scale vehicles. With these challenges in mind, we present progress in the essential technologies for insect-scale robots, or ‘pico’ air vehicles.

[1]  Robert J. Wood,et al.  Asymmetric flapping for a robotic fly using a hybrid power-control actuator , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  M. Goldfarb,et al.  The Development of Elastodynamic Components for Piezoelectrically Actuated Flapping Micro-Air Vehicles , 2002 .

[3]  David Lentink,et al.  The Scalable Design of Flapping Micro-Air Vehicles Inspired by Insect Flight , 2010, Flying Insects and Robots.

[4]  Robert J. Wood,et al.  An Autonomous Palm-Sized Gliding Micro Air Vehicle , 2007, IEEE Robotics & Automation Magazine.

[5]  W. Cao,et al.  Smart materials and structures. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Kevin C. Galloway,et al.  First controlled vertical flight of a biologically inspired microrobot , 2011, Bioinspiration & biomimetics.

[7]  Z. J. Wang,et al.  Passive wing pitch reversal in insect flight , 2007, Journal of Fluid Mechanics.

[8]  R. Wood,et al.  A novel low-profile shape memory alloy torsional actuator , 2010 .

[9]  Richard Heydt,et al.  Applications of dielectric elastomer actuators , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[10]  Ronald S. Fearing,et al.  Power Electronics Design Choice for Piezoelectric Microrobots , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Robert J Wood,et al.  Distributed power and control actuation in the thoracic mechanics of a robotic insect , 2010, Bioinspiration & biomimetics.

[12]  Robert J. Wood,et al.  Dynamically tuned design of the MFI thorax , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[13]  K.E. Petersen,et al.  Silicon as a mechanical material , 1982, Proceedings of the IEEE.

[14]  B.R. Donald,et al.  An untethered, electrostatic, globally controllable MEMS micro-robot , 2006, Journal of Microelectromechanical Systems.

[15]  Vijay Kumar,et al.  Autonomous multi-floor indoor navigation with a computationally constrained MAV , 2011, 2011 IEEE International Conference on Robotics and Automation.

[16]  Robert J. Wood,et al.  Lift force control of a flapping-wing microrobot , 2011, Proceedings of the 2011 American Control Conference.

[17]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[18]  Robert J. Wood,et al.  Biomimetic sensor suite for flight control of a micromechanical flying insect: design and experimental results , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[19]  K. Pister,et al.  An SOI process for fabrication of solar cells, transistors and electrostatic actuators , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[20]  J. P. Whitney,et al.  Pop-up book MEMS , 2011 .

[21]  Gregory H. Miller,et al.  Neurotechnology for biomimetic robots , 2002 .

[22]  Bo-Kuai Lai,et al.  Scalable nanostructured membranes for solid-oxide fuel cells. , 2011, Nature nanotechnology.

[23]  Kristofer S. J. Pister,et al.  Surface-micromachined components for articulated microrobots , 1996 .

[24]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[25]  Robert J. Wood,et al.  Low power control IC for efficient high-voltage piezoelectric driving in a flying robotic insect , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[26]  Ronald S. Fearing,et al.  Dynamometer power output measurements of piezoelectric actuators , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  W. Nachtigall,et al.  The biomechanics of insect flight. Form, function, and evolution: Robert Dudley; Princeton University Press, Princeton, NJ , 2003 .

[28]  J. Vincent,et al.  Design and mechanical properties of insect cuticle. , 2004, Arthropod structure & development.

[29]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[30]  Ronald S. Fearing,et al.  Wing transmission for a micromechanical flying insect , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[31]  R. Fearing,et al.  Optimal energy density piezoelectric bending actuators , 2005 .

[32]  R. Hengstenberg,et al.  The halteres of the blowfly Calliphora , 1994, Journal of Comparative Physiology A.

[33]  J. P. Whitney,et al.  Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight. , 2011, Integrative and comparative biology.

[34]  R. Grimshaw Journal of Fluid Mechanics , 1956, Nature.

[35]  T. Daniel,et al.  The Journal of Experimental Biology 206, 2989-2997 © 2003 The Company of Biologists Ltd , 2003 .

[36]  Robert J. Wood,et al.  Microrobot Design Using Fiber Reinforced Composites , 2008 .

[37]  William C. Tang,et al.  Electrostatic-comb drive of lateral polysilicon resonators , 1990 .

[38]  R. Wood,et al.  Fabrication of corrugated artificial insect wings using laser micromachined molds , 2010 .

[39]  Roland Siegwart,et al.  Fascination of Down Scaling - Alice the Sugar Cube Robot , 2000 .

[40]  Robert J. Wood,et al.  Passive Aerodynamic Drag Balancing in a Flapping-Wing Robotic Insect , 2010 .

[41]  A. R. Ennos The Inertial Cause of Wing Rotation in Diptera , 1988 .

[42]  Gu-Yeon Wei,et al.  The Accelerator Store framework for high-performance, low-power accelerator-based systems , 2010, IEEE Computer Architecture Letters.

[43]  Robert J. Wood,et al.  Stroke plane deviation for a microrobotic fly , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[44]  Robert J. Wood,et al.  An ultra-high precision, high bandwidth torque sensor for microrobotics applications , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[45]  SYDNEY GREGORY,et al.  Mechanical Design , 1973, Nature.

[46]  Robert J. Wood,et al.  A review of actuation and power electronics options for flapping-wing robotic insects , 2008, 2008 IEEE International Conference on Robotics and Automation.

[47]  Robert J. Wood,et al.  A novel multi-axis force sensor for microrobotics applications , 2009 .

[48]  Isao Shimoyama,et al.  Flight dynamics of a butterfly-type ornithopter , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  Dario Floreano,et al.  Energy-Time Efficiency in Aerial Swarm Deployment , 2010, DARS.

[50]  G. Schmid The Nature of Nanotechnology , 2010 .

[51]  Rodney A. Brooks,et al.  Fast, Cheap and Out of Control: a Robot Invasion of the Solar System , 1989 .

[52]  T. Daniel,et al.  Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta , 2003, Journal of Experimental Biology.

[53]  Robert J. Wood,et al.  Energetics of flapping-wing robotic insects: towards autonomous hovering flight , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[54]  Hoon Cheol Park,et al.  Equivalent modeling for ionic polymer–metal composite actuators based on beam theories , 2005 .

[55]  Robert J. Wood,et al.  Design, fabrication, and analysis of a 3DOF, 3cm flapping-wing MAV , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[56]  H Tanaka,et al.  Programmable matter by folding , 2010, Proceedings of the National Academy of Sciences.

[57]  Robert J. Wood,et al.  Body torque modulation for a microrobotic fly , 2009, 2009 IEEE International Conference on Robotics and Automation.

[58]  J. P. Whitney,et al.  Aeromechanics of passive rotation in flapping flight , 2010, Journal of Fluid Mechanics.

[59]  William S. N. Trimmer,et al.  Microrobots and micromechanical systems , 1989 .

[60]  R. J. Wood,et al.  Artificial insect wings of diverse morphology for flapping-wing MAVs , 2009 .

[61]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.