Localization of the Epileptogenic Foci in Tuberous Sclerosis Complex: A Pediatric Case Report

Tuberous sclerosis complex (TSC) is a rare disorder of tissue growth and differentiation, characterized by benign hamartomas in the brain and other organs. Up to 90% of TSC patients develop epilepsy and 50% become medically intractable requiring resective surgery. The surgical outcome of TSC patients depends on the accurate identification of the epileptogenic zone consisting of tubers and the surrounding epileptogenic tissue. There is conflicting evidence whether the epileptogenic zone is in the tuber itself or in abnormally developed surrounding cortex. Here, we report the localization of the epileptiform activity among the many cortical tubers in a 4-year-old patient with TSC-related refractory epilepsy undergoing magnetoencephalography (MEG), electroencephalography (EEG), and diffusion tensor imaging (DTI). For MEG, we used a prototype system that offers higher spatial resolution and sensitivity compared to the conventional adult systems. The generators of interictal activity were localized using both EEG and MEG with equivalent current dipole (ECD) and minimum norm estimation (MNE) methods according to the current clinical standards. For DTI, we calculated four diffusion scalar parameters for the fibers passing through four ROIs defined: (i) at a large cortical tuber identified at the right quadrant, (ii) at the normal appearing tissue contralateral to the tuber, (iii) at the cluster formed by ECDs fitted at the peak of interictal spikes, and (iv) at the normal appearing tissue contralateral to the cluster. ECDs were consistently clustered at the vicinity of the large calcified cortical tuber. MNE and ECDs indicated epileptiform activity in the same areas. DTI analysis showed differences between the scalar values of the tracks passing through the tuber and the ECD cluster. In this illustrative case, we provide evidence from different neuroimaging modalities, which support the view that epileptiform activity may derive from abnormally developed tissue surrounding the tuber rather than the tuber itself.

[1]  Yoshio Okada,et al.  Current and emerging potential for magnetoencephalography in pediatric epilepsy , 2013, Journal of Pediatric Epilepsy.

[2]  E. Roach,et al.  Tuberous sclerosis complex. , 2015, Handbook of clinical neurology.

[3]  Christoph M. Michel,et al.  Localization of the epileptogenic tuber with electric source imaging in patients with tuberous sclerosis , 2014, Epilepsy Research.

[4]  Jens Haueisen,et al.  Tangential and Radial Epileptic Spike Activity: Different Sensitivity in EEG and MEG , 2012, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[5]  J. Drake,et al.  Lateralized interictal epileptiform discharges during rapid eye movement sleep correlate with epileptogenic hemisphere in children with intractable epilepsy secondary to tuberous sclerosis complex , 2011, Epilepsia.

[6]  R. Harper,et al.  Rostral brain axonal injury in congenital central hypoventilation syndrome , 2010, Journal of neuroscience research.

[7]  Seppo P. Ahlfors,et al.  Sensitivity of MEG and EEG to Source Orientation , 2010, Brain Topography.

[8]  Ayako Ochi,et al.  Diffusion tensor imaging identifies changes in normal-appearing white matter within the epileptogenic zone in tuberous sclerosis complex , 2010, Epilepsy Research.

[9]  A. Nurten,et al.  Scopolamine-induced convulsions in fasted mice after food intake: Evaluation of the sedative effect in the suppression of convulsions , 2010, Epilepsy Research.

[10]  Ayako Ochi,et al.  Localization of epileptic foci in children with intractable epilepsy secondary to multiple cortical tubers by using synthetic aperture magnetometry kurtosis. , 2009, Journal of neurosurgery. Pediatrics.

[11]  P. Fenwick,et al.  MEG’s ability to localise accurately weak transient neural sources , 2009, Clinical Neurophysiology.

[12]  L. Vaina,et al.  Mapping the signal‐to‐noise‐ratios of cortical sources in magnetoencephalography and electroencephalography , 2009, Human brain mapping.

[13]  L. Kornreich,et al.  Unusual Clinical Presentation of Tuberless Tuberous Sclerosis Complex , 2009, Journal of child neurology.

[14]  A. Kamondi,et al.  Post-movement beta synchronisation after complex prosaccade task , 2009, Clinical Neurophysiology.

[15]  W. Löscher,et al.  The clinical impact of pharmacogenetics on the treatment of epilepsy , 2009, Epilepsia.

[16]  Mirela V. Simon,et al.  Are cortical tubers epileptogenic? Evidence from electrocorticography , 2009, Epilepsia.

[17]  Masao Iwase,et al.  Tuberous sclerosis: Localizing the epileptogenic tuber with synthetic aperture magnetometry with excess kurtosis analysis , 2008, Journal of Clinical Neuroscience.

[18]  Jeffry R Alger,et al.  Diffusion Tensor Imaging Demonstrates Brainstem and Cerebellar Abnormalities in Congenital Central Hypoventilation Syndrome , 2008, Pediatric Research.

[19]  D. V. Alatov,et al.  A method for determining the impulsive force range in experimental simulation of various long bone fractures , 2008, Meditsinskaia tekhnika.

[20]  Jean Gotman,et al.  Evaluation of epileptogenic networks in children with tuberous sclerosis complex using EEG‐fMRI , 2008, Epilepsia.

[21]  A. I. Dias,et al.  Analysis of the dynamics and origin of epileptic activity in patients with tuberous sclerosis evaluated for surgery of epilepsy , 2008, Clinical Neurophysiology.

[22]  Shu-Wei Sun,et al.  Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging , 2008, NeuroImage.

[23]  N. Krayenbühl,et al.  Use of an empty, plasmapore-covered titanium cage for interbody fusion after anterior cervical microdiscectomy , 2008, Journal of Clinical Neuroscience.

[24]  H. Chugani,et al.  Characteristics of Abnormal Diffusivity in Normal-Appearing White Matter Investigated with Diffusion Tensor MR Imaging in Tuberous Sclerosis Complex , 2007, American Journal of Neuroradiology.

[25]  A. V. van Huffelen,et al.  Epilepsy Surgery in Tuberous Sclerosis: A Systematic Review , 2007, Epilepsia.

[26]  W. Löscher Drug Transporters in the Epileptic Brain , 2007, Epilepsia.

[27]  M. Calcagnotto,et al.  Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of TSC1 , 2007, Annals of neurology.

[28]  Mark B. Bromberg,et al.  Updating motor unit number estimation (MUNE) , 2007, Clinical Neurophysiology.

[29]  John S. Ebersole,et al.  Localizing value of scalp EEG spikes: A simultaneous scalp and intracranial study , 2007, Clinical Neurophysiology.

[30]  G. deVeber,et al.  Angiography of primary central nervous system angiitis of childhood: conventional angiography versus magnetic resonance angiography at presentation. , 2007, AJNR. American journal of neuroradiology.

[31]  M. Scherg,et al.  MEG Versus EEG: Influence of Background Activity on Interictal Spike Detection , 2006, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[32]  C. V. van Donselaar,et al.  How Confident Are We of the Diagnosis of Epilepsy? , 2006, Epilepsia.

[33]  Siddhartha S. Nadkarni Pitfalls of Diagnosing Epilepsy: A Case Report , 2006, Epilepsia.

[34]  G. Mathern,et al.  FDG‐PET/MRI Coregistration and Diffusion‐Tensor Imaging Distinguish Epileptogenic Tubers and Cortex in Patients with Tuberous Sclerosis Complex: A Preliminary Report , 2006, Epilepsia.

[35]  C. Michel,et al.  EEG Source Imaging in Pediatric Epilepsy Surgery: A New Perspective in Presurgical Workup , 2006, Epilepsia.

[36]  S. Kameyama,et al.  Magnetoencephalography in Patients with Tuberous Sclerosis and Localization‐related Epilepsy , 2006, Epilepsia.

[37]  R Sankar,et al.  Magnetic source imaging localizes epileptogenic zone in children with tuberous sclerosis complex , 2006, Neurology.

[38]  Kevin Pratt,et al.  BabySQUID: A mobile, high-resolution multichannel magnetoencephalography system for neonatal brain assessment , 2006 .

[39]  P. Ince,et al.  Demystifying lobar degenerations , 2006, Neurology.

[40]  Geertjan Huiskamp,et al.  Identification of the Epileptogenic Tuber in Patients with Tuberous Sclerosis: A Comparison of High‐resolution EEG and MEG , 2006, Epilepsia.

[41]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[42]  T. Votteler,et al.  Lesions of the accessory parotid gland in children , 2005, Pediatric Radiology.

[43]  Hiroshi Otsubo,et al.  Volumetric localization of epileptic activities in tuberous sclerosis using synthetic aperture magnetometry , 2005, Pediatric Radiology.

[44]  Hoi Pang Low,et al.  Myelination and long diffusion times alter diffusion-tensor-imaging contrast in myelin-deficient shiverer mice , 2005, NeuroImage.

[45]  Roberto Spreafico,et al.  Seventh Workshop on the Neurobiology of Epilepsy (WONOEP VII): Preface , 2005 .

[46]  W. Kaiser,et al.  Diffusion tensor imaging in children and adolescents with tuberous sclerosis , 2005, Pediatric Radiology.

[47]  Jun Yoshino,et al.  Demyelination increases radial diffusivity in corpus callosum of mouse brain , 2005, NeuroImage.

[48]  Matti Hämäläinen,et al.  Visualizing human brain surface from T1-weighted MR images using texture-mapped triangle meshes , 2005, NeuroImage.

[49]  E. Pestana,et al.  Identification of candidates for epilepsy surgery in patients with tuberous sclerosis , 2005, Neurology.

[50]  H. Otsubo,et al.  Characterizing magnetic spike sources by using magnetoencephalography-guided neuronavigation in epilepsy surgery in pediatric patients. , 2005, Journal of neurosurgery.

[51]  H. Lüders,et al.  Detection of Epileptiform Activity by Human Interpreters: Blinded Comparison between Electroencephalography and Magnetoencephalography , 2005, Epilepsia.

[52]  S. Seri,et al.  Epilepsy surgery for tuberous sclerosis. , 2004, Pediatric neurology.

[53]  M. Murray,et al.  EEG source imaging , 2004, Clinical Neurophysiology.

[54]  P Berg,et al.  Magnetoencephalographic spikes not detected by conventional electroencephalography , 2004, Clinical Neurophysiology.

[55]  Takashi Yoshimoto,et al.  Comparison of magnetoencephalographic spikes with and without concurrent electroencephalographic spikes in extratemporal epilepsy. , 2004, The Tohoku journal of experimental medicine.

[56]  H. Weiner,et al.  Tuberous Sclerosis and Multiple Tubers: Localizing the Epileptogenic Zone , 2004, Epilepsia.

[57]  S. Peng,et al.  Cerebral diffusion tensor images in children with tuberous sclerosis: a preliminary report , 2004, Pediatric Radiology.

[58]  Jeroen van der Grond,et al.  Diffusion-weighted magnetic resonance imaging and identification of the epileptogenic tuber in patients with tuberous sclerosis. , 2003, Archives of neurology.

[59]  Shu-Wei Sun,et al.  Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia , 2003, NeuroImage.

[60]  G Scheler,et al.  Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. , 2003, Brain : a journal of neurology.

[61]  C. Michel,et al.  Propagation of Interictal Epileptiform Activity Can Lead to Erroneous Source Localizations: A 128-Channel EEG Mapping Study , 2003, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[62]  Ayako Ochi,et al.  Complications of invasive subdural grid monitoring in children with epilepsy. , 2003, Journal of neurosurgery.

[63]  S. Green The paediatric overview , 2003, Pediatric Radiology.

[64]  Jens Haueisen,et al.  Postprocessing of 3-D current density reconstruction results with equivalent ellipsoids , 2002, IEEE Transactions on Biomedical Engineering.

[65]  John Russell,et al.  Dysmyelination Revealed through MRI as Increased Radial (but Unchanged Axial) Diffusion of Water , 2002, NeuroImage.

[66]  I. Tuxhorn,et al.  Epilepsy surgery outcome in children with focal epilepsy due to tuberous sclerosis complex. , 2002, Neuropediatrics.

[67]  Tomoyuki Nakahori,et al.  Benefit of Simultaneous Recording of EEG and MEG in Dipole Localization , 2002, Epilepsia.

[68]  Mauricio Castillo,et al.  Diffusion-weighted magnetic resonance imaging. , 2002, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[69]  R. Torta,et al.  Atypical Antipsychotics and Serotoninergic Antidepressants in Patients with Epilepsy: Pharmacodynamic Considerations , 2002, Epilepsia.

[70]  P. Curatolo,et al.  Tuberous sclerosis complex: a review of neurological aspects. , 2002, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[71]  P. Lauterbur,et al.  Apparent diffusion tensor measurements in myelin‐deficient rat spinal cords , 2001, Magnetic resonance in medicine.

[72]  R. Rosenberg Reviewers Who Completed a Review During 2008 , 2001 .

[73]  M. Duchowny,et al.  Epilepsy Surgery in Children with Tuberous Sclerosis Complex: Presurgical Evaluation and Outcome , 2000, Epilepsia.

[74]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[75]  L. Luo,et al.  Trio Quartet in D. (melanogaster) , 2000, Neuron.

[76]  G Lindinger,et al.  Neuromagnetic recordings in temporal lobe epilepsy. , 2000, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[77]  C. Shin Neurophysiologic basis of functional neuroimaging: animal studies. , 2000, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[78]  H. Pannek,et al.  Evaluation with subdural plates in children and adolescents. , 1999, Neurological research.

[79]  T. Rasmussen,et al.  Surgical treatment of epilepsy in tuberous sclerosis , 1998, Neurology.

[80]  M. Noetzel Fish oil and myelin , 1998, Neurology.

[81]  Christopher N Martyn,et al.  Prevalence of tuberous sclerosis estimated by capture-recapture analysis , 1998, The Lancet.

[82]  M. E. Spencer,et al.  A Study of Dipole Localization Accuracy for MEG and EEG using a Human Skull Phantom , 1998, NeuroImage.

[83]  S. Spencer,et al.  Significance of Spikes Recorded on Intraoperative Electrocorticography in Patients with Brain Tumor and Epilepsy , 1997, Epilepsia.

[84]  Jens Haueisen,et al.  Der Einfluss der Randelementediskretisierung auf die Vorwärtsrechnung und das inverse Problem in Elektroencephalographie und Magnetoencephalographie , 1997 .

[85]  G. Ojemann,et al.  Surgical management and seizure outcome in patients with tuberous sclerosis. , 1997, Journal of neurosurgery.

[86]  Hartmut Brauer,et al.  Der Einfluß der Randelementediskretisierung auf die Vorwärtsrechnung und das inverse Problem in Elektroencephalographie und Magnetoencephalographie - The Influence of Boundary Element Discretization on the Forward and Inverse Problem in Electroencephalography and Magnetoencephalography , 1997 .

[87]  N Nakasato,et al.  Comparisons of MEG, EEG, and ECoG source localization in neocortical partial epilepsy in humans. , 1994, Electroencephalography and clinical neurophysiology.

[88]  C. Beaulieu,et al.  Determinants of anisotropic water diffusion in nerves , 1994, Magnetic resonance in medicine.

[89]  C. N. Guy,et al.  Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation. , 1994, Journal of neurology, neurosurgery, and psychiatry.

[90]  D. Kwiatkowski,et al.  Tuberous sclerosis. , 1994, Archives of dermatology.

[91]  P. Kotagal,et al.  Epilepsy in the Setting of Neurocutaneous Syndromes , 1993, Epilepsia.

[92]  P J Kelly,et al.  Surgical Treatment for Epilepsy in Cerebral Tuberous Sclerosis , 1993, Epilepsia.

[93]  C. Wasterlain,et al.  Electroconvulsive seizures in the immature rat adversely affect myelin accumulation , 1982, Experimental Neurology.

[94]  G. Mathern,et al.  Epilepsia , 1991, NEURO FUNDAMENTAL.