Borda and Condorcet: Some Distance Results
暂无分享,去创建一个
[1] Donald G. Saari,et al. Mathematical structure of voting paradoxes , 2000 .
[2] H. Moulin. Axioms of Cooperative Decision Making , 1988 .
[3] Christian Klamler. A comparison of the Dodgson method and the Copeland rule , 2003 .
[4] H. P. Young,et al. An axiomatization of Borda's rule , 1974 .
[5] Christian Klamler,et al. The Dodgson ranking and its relation to Kemeny’s method and Slater’s rule , 2004, Soc. Choice Welf..
[6] P. Fishburn. Condorcet Social Choice Functions , 1977 .
[7] P. Pattanaik,et al. Necessary and Sufficient Conditions for Rational Choice under Majority Decision , 1969 .
[8] H. Young. Condorcet's Theory of Voting , 1988, American Political Science Review.
[9] B. Debord. Caractérisation des matrices des préférences nettes et méthodes d'agrégation associées , 1987 .
[10] S. Shapiro,et al. Mathematics without Numbers , 1993 .
[11] Jean-François Laslier,et al. The Copeland Measure of Condorcet Choice Functions , 1994, Discret. Appl. Math..
[12] Hannu Nurmi,et al. Voting paradoxes and how to deal with them , 1999 .
[13] Donald G. Saari,et al. Mathematical Structure of Voting Paradoxes: II. Positional Voting , 1999 .
[14] D. Saari. Basic Geometry of Voting , 1995 .
[15] D. Black. The theory of committees and elections , 1959 .
[16] Thomas C. Ratliff. A comparison of Dodgson's method and Kemeny's rule , 2001, Soc. Choice Welf..
[17] M. Truchon,et al. A Borda Measure for Social Choice Functions , 1997 .
[18] D. Saari. Explaining All Three-Alternative Voting Outcomes , 1999 .
[19] Thomas C. Ratliff. A comparison of Dodgson's method and the Borda count , 2002 .
[20] H. Young. Optimal Voting Rules , 1995 .