Nonlinear estimation of the fundamental matrix with minimal parameters
暂无分享,去创建一个
[1] Olivier D. Faugeras,et al. Some Properties of the E Matrix in Two-View Motion Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[2] Adrien Bartoli. On the Non-linear Optimization of Projective Motion Using Minimal Parameters , 2002, ECCV.
[3] J. Stuelpnagel. On the Parametrization of the Three-Dimensional Rotation Group , 1964 .
[4] Kenichi Kanatani,et al. Gauges and gauge transformations for uncertainty description of geometric structure with indeterminacy , 2001, IEEE Trans. Inf. Theory.
[5] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[6] M. Smith. Close range photogrammetry and machine vision , 1997 .
[7] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[8] Bernhard P. Wrobel,et al. Multiple View Geometry in Computer Vision , 2001 .
[9] P. McLauchlan. Gauge invariance in projective 3D reconstruction , 1999, Proceedings IEEE Workshop on Multi-View Modeling and Analysis of Visual Scenes (MVIEW'99).
[10] Zhengyou Zhang,et al. Determining the Epipolar Geometry and its Uncertainty: A Review , 1998, International Journal of Computer Vision.
[11] Andrew Zisserman,et al. Robust Detection of Degenerate Configurations while Estimating the Fundamental Matrix , 1998, Comput. Vis. Image Underst..
[12] Thierry Viéville,et al. Canonic Representations for the Geometries of Multiple Projective Views , 1994, ECCV.
[13] Richard I. Hartley,et al. In defence of the 8-point algorithm , 1995, Proceedings of IEEE International Conference on Computer Vision.
[14] Olivier D. Faugeras,et al. The fundamental matrix: Theory, algorithms, and stability analysis , 2004, International Journal of Computer Vision.
[15] Kenneth Levenberg. A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .
[16] Andrew Zisserman,et al. Multiple view geometry in computer visiond , 2001 .
[17] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[18] Thomas S. Huang,et al. Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surfaces , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[19] Thierry Viéville,et al. Canonical Representations for the Geometries of Multiple Projective Views , 1996, Comput. Vis. Image Underst..
[20] Andrew Zisserman,et al. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..
[21] Radu Horaud,et al. Projective Structure and Motion from Two Views of a Piecewise Planar Scene , 2001, ICCV.
[22] Andrew W. Fitzgibbon,et al. Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.
[23] R. M. Loynes,et al. Non-Linear Regression. , 1990 .
[24] Charles T. Loop,et al. Estimating the Fundamental Matrix by Transforming Image Points in Projective Space , 2001, Comput. Vis. Image Underst..
[25] H. C. Longuet-Higgins,et al. A computer algorithm for reconstructing a scene from two projections , 1981, Nature.
[26] Adrien Bartoli,et al. Three New Algorithms for Projective Bundle Adjustment with Minimum Parameters , 2001 .
[27] Richard I. Hartley,et al. Projective Reconstruction and Invariants from Multiple Images , 1994, IEEE Trans. Pattern Anal. Mach. Intell..