Nonlinear estimation of the fundamental matrix with minimal parameters

The purpose of this paper is to give a very simple method for nonlinearly estimating the fundamental matrix using the minimum number of seven parameters. Instead of minimally parameterizing it, we rather update what we call its orthonormal representation, which is based on its singular value decomposition. We show how this method can be used for efficient bundle adjustment of point features seen in two views. Experiments on simulated and real data show that this implementation performs better than others in terms of computational cost, i.e., convergence is faster, although methods based on minimal parameters are more likely to fall into local minima than methods based on redundant parameters.

[1]  Olivier D. Faugeras,et al.  Some Properties of the E Matrix in Two-View Motion Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Adrien Bartoli On the Non-linear Optimization of Projective Motion Using Minimal Parameters , 2002, ECCV.

[3]  J. Stuelpnagel On the Parametrization of the Three-Dimensional Rotation Group , 1964 .

[4]  Kenichi Kanatani,et al.  Gauges and gauge transformations for uncertainty description of geometric structure with indeterminacy , 2001, IEEE Trans. Inf. Theory.

[5]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[6]  M. Smith Close range photogrammetry and machine vision , 1997 .

[7]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[8]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[9]  P. McLauchlan Gauge invariance in projective 3D reconstruction , 1999, Proceedings IEEE Workshop on Multi-View Modeling and Analysis of Visual Scenes (MVIEW'99).

[10]  Zhengyou Zhang,et al.  Determining the Epipolar Geometry and its Uncertainty: A Review , 1998, International Journal of Computer Vision.

[11]  Andrew Zisserman,et al.  Robust Detection of Degenerate Configurations while Estimating the Fundamental Matrix , 1998, Comput. Vis. Image Underst..

[12]  Thierry Viéville,et al.  Canonic Representations for the Geometries of Multiple Projective Views , 1994, ECCV.

[13]  Richard I. Hartley,et al.  In defence of the 8-point algorithm , 1995, Proceedings of IEEE International Conference on Computer Vision.

[14]  Olivier D. Faugeras,et al.  The fundamental matrix: Theory, algorithms, and stability analysis , 2004, International Journal of Computer Vision.

[15]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[16]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[17]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[18]  Thomas S. Huang,et al.  Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surfaces , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Thierry Viéville,et al.  Canonical Representations for the Geometries of Multiple Projective Views , 1996, Comput. Vis. Image Underst..

[20]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[21]  Radu Horaud,et al.  Projective Structure and Motion from Two Views of a Piecewise Planar Scene , 2001, ICCV.

[22]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[23]  R. M. Loynes,et al.  Non-Linear Regression. , 1990 .

[24]  Charles T. Loop,et al.  Estimating the Fundamental Matrix by Transforming Image Points in Projective Space , 2001, Comput. Vis. Image Underst..

[25]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[26]  Adrien Bartoli,et al.  Three New Algorithms for Projective Bundle Adjustment with Minimum Parameters , 2001 .

[27]  Richard I. Hartley,et al.  Projective Reconstruction and Invariants from Multiple Images , 1994, IEEE Trans. Pattern Anal. Mach. Intell..