A unified context model for web image retrieval

Content-based web image retrieval based on the query-by-example (QBE) principle remains a challenging problem due to the semantic gap as well as the gap between a user's intent and the representativeness of a typical image query. In this article, we propose to address this problem by integrating query-related contextual information into an advanced query model to improve the performance of QBE-based web image retrieval. We consider both the local and global context of the query image. The local context can be inferred from the web pages and the click-through log associated with the query image, while the global context is derived from the entire corpus comprising all web images and the associated web pages. To effectively incorporate the local query context we propose a language modeling based approach to deal with the combined structured query representation from the contextual and visual information. The global query context is integrated by the multi-modal relevance model to “reconstruct” the query from the document models indexed in the corpus. In this way, the global query context is employed to address the noise or missing information in the query and its local context, so that a comprehensive and robust query model can be obtained. We evaluated the proposed approach on a representative product image dataset collected from the web and demonstrated that the inclusion of the local and global query contexts significantly improves the performance of QBE-based web image retrieval.

[1]  Yi Yang,et al.  Ranking with local regression and global alignment for cross media retrieval , 2009, ACM Multimedia.

[2]  Xiaojie Yuan,et al.  Evaluating the Effectiveness of Personalized Web Search , 2009, IEEE Transactions on Knowledge and Data Engineering.

[3]  Xian-Sheng Hua,et al.  Contextual image retrieval model , 2010, CIVR '10.

[4]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[5]  CHENGXIANG ZHAI,et al.  A study of smoothing methods for language models applied to information retrieval , 2004, TOIS.

[6]  Newton Lee,et al.  ACM Transactions on Multimedia Computing, Communications and Applications (ACM TOMCCAP) , 2007, CIE.

[7]  Xian-Sheng Hua,et al.  Large-scale robust visual codebook construction , 2010, ACM Multimedia.

[8]  Ramesh C. Jain,et al.  Semantics In Digital Photos: A Contenxtual Analysis , 2008, 2008 IEEE International Conference on Semantic Computing.

[9]  Meng Wang,et al.  Visual query suggestion , 2010, ACM Trans. Multim. Comput. Commun. Appl..

[10]  ChengXiang Zhai,et al.  Statistical Language Models for Information Retrieval , 2008, NAACL.

[11]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Thomas S. Huang,et al.  Relevance feedback in image retrieval: A comprehensive review , 2003, Multimedia Systems.

[13]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[14]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[15]  HongJiang Zhang Multimedia content analysis and search: new perspectives and approaches , 2009, ACM Multimedia.

[16]  Tao Mei,et al.  Contextual in-image advertising , 2008, ACM Multimedia.

[17]  Wei-Ying Ma,et al.  Optimizing web search using web click-through data , 2004, CIKM '04.

[18]  Nicholas J. Belkin,et al.  Some(what) grand challenges for information retrieval , 2008, SIGF.

[19]  Michael Isard,et al.  Object retrieval with large vocabularies and fast spatial matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Hugh E. Williams,et al.  Query association surrogates for Web search: Research Articles , 2004 .

[21]  Meng Wang,et al.  MSRA atT TRECVID 2008: High-Level Feature Extraction and Automatic Search , 2008, TRECVID.

[22]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[23]  Wei-Ying Ma,et al.  Annotating Images by Mining Image Search Results , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[25]  Rong Yan,et al.  Multimedia Search with Pseudo-relevance Feedback , 2003, CIVR.

[26]  William I. Grosky,et al.  Narrowing the semantic gap - improved text-based web document retrieval using visual features , 2002, IEEE Trans. Multim..

[27]  Steve Lawrence,et al.  Context in Web Search , 2000, IEEE Data Eng. Bull..

[28]  Qi Tian,et al.  Integration of Context and Content for Multimedia Management: An Introduction to the Special Issue , 2009, IEEE Trans. Multim..

[29]  Dong Xu,et al.  Columbia University TRECVID-2006 Video Search and High-Level Feature Extraction , 2006, TRECVID.

[30]  Ross Wilkinson,et al.  Effective retrieval of structured documents , 1994, SIGIR '94.

[31]  Jiebo Luo,et al.  Image Annotation Within the Context of Personal Photo Collections Using Hierarchical Event and Scene Models , 2009, IEEE Transactions on Multimedia.

[32]  Alan Hanjalic,et al.  Supervised reranking for web image search , 2010, ACM Multimedia.

[33]  Stephen E. Robertson,et al.  Simple BM25 extension to multiple weighted fields , 2004, CIKM '04.

[34]  Yi-Hsuan Yang,et al.  ContextSeer: context search and recommendation at query time for shared consumer photos , 2008, ACM Multimedia.

[35]  Hugh E. Williams,et al.  Query association for effective retrieval , 2002, CIKM '02.

[36]  Bo Geng,et al.  A Study of Language Model for Image Retrieval , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[37]  Wei-Ying Ma,et al.  A Probabilistic Semantic Model for Image Annotation and Multi-Modal Image Retrieva , 2005, ICCV.

[38]  Beng Chin Ooi,et al.  Giving meanings to WWW images , 2000, MM 2000.

[39]  Jaana Kekäläinen,et al.  IR evaluation methods for retrieving highly relevant documents , 2000, SIGIR '00.

[40]  Hugo Zaragoza,et al.  The Probabilistic Relevance Framework: BM25 and Beyond , 2009, Found. Trends Inf. Retr..

[41]  W. Bruce Croft,et al.  Cross-lingual relevance models , 2002, SIGIR '02.

[42]  Marcel Worring,et al.  Concept-Based Video Retrieval , 2009, Found. Trends Inf. Retr..

[43]  Xian-Sheng Hua,et al.  Bayesian video search reranking , 2008, ACM Multimedia.

[44]  Djoerd Hiemstra,et al.  A Probabilistic Multimedia Retrieval Model and Its Evaluation , 2003, EURASIP J. Adv. Signal Process..

[45]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[46]  Wei-Ying Ma,et al.  Multi-model similarity propagation and its application for web image retrieval , 2004, MULTIMEDIA '04.

[47]  HuaXian-Sheng,et al.  A unified context model for web image retrieval , 2012 .

[48]  Bo Zhang,et al.  A unified framework for image retrieval using keyword and visual features , 2005, IEEE Transactions on Image Processing.